Metaëthica

Multi tool use
Metaëthica sive ethica analytica est ethicae pars, cuius studiosi proprietatum, dictorum, voluntatum, iudiciorum ethicorum naturam intellegere volunt. Metaëthica est una ex quattuor partibus ethicae generatim a philosophis cognitis, quorum alii sunt ethica descriptiva, normativa, practica.
Ethica normativa quaestionem "Quid facere debeo?" et similes (ergo alias aestimationes ethicas comprobans, alias reiciens), metaëthica autem quaestiones "Quid est bonum?" et "Quomodo inter bonum et malum distinguere possumus?" et similes tractat.
Nexus interni
- Adiaphora
- Anthropocentrismus
- Empirismus
- Matthaeus Kramer
- Godefridus Sayre-McCord
- Quaestio est-debet
- Realismus moralis
- Relativismus moralis
- Michael Andreas Smith
- Universalismus moralis
Bibliographia |
- Couture, Jocelyne, et Kai Nielsen. 1995. Introduction: The Ages of Metaethics. In On the Relevance of Metaethics: New Essays in Metaethics, ed. Jocelyne Couture et Kai Nielsen, 1-30. Calgary: University of Calgary Press.
- Garner, Richard T., et Bernard Rosen. 1967. Moral Philosophy: A Systematic Introduction to Normative Ethics and Meta-Ethics. Novi Eboraci: Macmillan.
- Gibbard, Allan. 1993. Reply to Railton. In Naturalism and Normativity, ed. Enrique Villanueva, 52-59. Atascadero Californiae: Ridgeview.
- Hurley, S. L. 1985. Objectivity and Disagreement. In Morality and Objectivity, ed. Ted Honderich, 54-97. Londinii: Routledge & Kegan Paul.
- Hurley, S. L. 1989. Natural Reasons: Personality and Polity. Oxoniae: Oxford University Press.
- Jackson, Frank. 1992. Critical Notice. Australasian Journal of Philosophy 70(4):475-488.
Nexus externi |
- Hare, R. M. 1952. The Language of Morals.
- Hiemer, Michael. De meta-ethica, praecipue intuitionismo.
- Kant, Immanuel. Groundwork of the Metaphysics of Morals.
Metaethics. In Internet Encyclopedia of Philosophy.
- Mittler, J. J. Relativity theory of ethics.
- Wilson, Catherine. 2016. Metaethics from a First Person Standpoint.
zl tKKFtjYPbGTJO,SCP2Zkm,o0b JzJDll,Co3VFJ 3dZuhyY2Ewofxt7ou,1GMaxnrWB ner7NC,HJQTANaCTBEnSC Ldh,I mhZqCS4
Popular posts from this blog
Tabula multilinguis Rosettana in Museo Britannico ostenditur. Tabula Rosettana, [1] etiam titulo OGIS 90 agnita, est stela decreto de rebus sacris in Aegypto anno 196 a.C.n. lato inscripta. Tabula iuxta Rosettam Aegypti, urbem in delta Nili et ad oram maris Mediterranei iacentem, anno 1799 a milite Francico reperta est. Inventio stelae, linguis duabus scripturisque tribus inscriptae, eruditis Instituti Aegypti statim nuntiata est; ibi enim iussu imperatoris Napoleonis eruditi omnium scientiarum (sub aegide Commissionis Scientiarum et Artium) properaverant cum expeditione Francica. Qua a Britannis mox debellata, tabula Rosettana Londinium missa hodie apud Museum Britannicum iacet. Textus Graecus cito lectus interpretationi textuum Aegyptiorum (in formis hieroglyphica et demotica expressorum) gradatim adiuvit. Denique textum plene interpretatus est Ioannes Franciscus Champollion. Ab opere eruditorum cumulativo coepit hodiernus scripturae hieroglyphicae linguaeque Aegyptiae a...
1
$begingroup$
This is what I mean as document text image: I want to label the texts in image as separate blocks and my model should detect these labels as classes. NOTE: This is how the end result should be like: The labels like Block 1, Block 2, Block 3,.. should be Logo, Title, Date,.. Others, etc. Work done: First approach : I tried to implement this method via Object Detection, it didn't work. It didn't even detect any text. Second approach : Then I tried it using PixelLink. As this model is build for scene text detection, it detected each and every text in the image. But this method can detect multiple lines of text if the threshold values are increased. But I have no idea how do I add labels to the text blocks. PIXEL_CLS_WEIGHT_all_ones = 'PIXEL_CLS_WEIGHT_all_ones' PIXEL_C...
1
$begingroup$
I have this LSTM model model = Sequential() model.add(Masking(mask_value=0, input_shape=(timesteps, features))) model.add(LSTM(100, dropout=0.2, recurrent_dropout=0.2, return_sequences=False)) model.add(Dense(features, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) and shapes X_train (21, 11, 5), y_train (21, 5) . Each timestep is represented by 5 features and return_sequences is set to False because I want to predict one 5D array (the next timestep) for each input sequence of 11 timesteps. I get the error ValueError: y_true and y_pred have different number of output (5!=1) If I reshape the data as X_train (21, 11, 5), y_train (21, 1, 5) instead I get the error ValueError: Inva...