Hollandia Australis

Multi tool use
Provincie Zuid-Holland
Provincia Hollandia Australis

|

|
(Vexillum)
|
(Insigne)
|
|

|
Caput
|
Haga
|
Commissarius regalis
|
Jaap Smit (CDA)
|
Religio (2005 [1])
|
Protestantes 20% Catholici Romani 15% Musulmani 8% Hinduistae 2%
|
Area - Terra - Aqua
|
5 2818 km² 585 km²
|
Numerus incolarum - totus - spissitudo incolarum - Numerus communium
|
1 3 452 323(2005) 1225 inc./km² 77
|
Coordinata geographica
|
52°08' NB 4°30'OL
|
Hymnus popularis
|
Zuid-Hollands volkslied
|
Pagina interretialis
|
www.zuid-holland.nl
|
Status provinciales
|
Numerus delegatorum CDA VVD PvdA SP ChristenUnie GroenLinks SGP PvdD Leefbaar ZH D66
|
55 13 12 10 8 4 3 2 1 1 1
|

|
Hollandia Australis est provincia civitatis Nederlandiae. Haga, sedes reginae gubernationisque et complurium institutionum internationalium, sita est in Hollandia Australi, atque Roterodamum, portus tertius mundi maximusque Europae.
Nexus interni
Notae |
↑ Geloven in het publieke domein. Verkenningen van een dubbele transformatie (W.B.H.J. van de Donk, A.P. Jonkers, G.J. Kronjee en R.J.J.M. Plum, red.), december 2006, ISBN 90-5356-936-7
Nexus externi |

|
Vicimedia Communia plura habent quae ad Hollandiam Australem spectant.
|
Pagina interretialis officialis .mw-parser-output .existinglinksgray a,.mw-parser-output .existinglinksgray a:visited{color:gray}.mw-parser-output .existinglinksgray a.new{color:#ba0000}.mw-parser-output .existinglinksgray a.new:visited{color:#a55858}
(Batave)
.mw-parser-output .stipula{padding:3px;background:#F7F8FF;border:1px solid grey;margin:auto}.mw-parser-output .stipula td.cell1{background:transparent;color:white}

|
Haec stipula ad geographiam spectat. Amplifica, si potes!
|
Provinciae Nederlandicae
|
|
Frisia · Groninga · Drenthia · Transisalania · Geldria · Brabantia Septentrionalis · Limburgum · Zelandia · Traiectum ad Rhenum · Hollandia Septentrionalis · Hollandia Australis · Flevolandia
|
|
qMTm4U qBJS1xEwIrW hdQ,euBuj,plTX6x3sNbeGMe0sv5cSS4MyqUijC9cl,klIM
Popular posts from this blog
Tabula multilinguis Rosettana in Museo Britannico ostenditur. Tabula Rosettana, [1] etiam titulo OGIS 90 agnita, est stela decreto de rebus sacris in Aegypto anno 196 a.C.n. lato inscripta. Tabula iuxta Rosettam Aegypti, urbem in delta Nili et ad oram maris Mediterranei iacentem, anno 1799 a milite Francico reperta est. Inventio stelae, linguis duabus scripturisque tribus inscriptae, eruditis Instituti Aegypti statim nuntiata est; ibi enim iussu imperatoris Napoleonis eruditi omnium scientiarum (sub aegide Commissionis Scientiarum et Artium) properaverant cum expeditione Francica. Qua a Britannis mox debellata, tabula Rosettana Londinium missa hodie apud Museum Britannicum iacet. Textus Graecus cito lectus interpretationi textuum Aegyptiorum (in formis hieroglyphica et demotica expressorum) gradatim adiuvit. Denique textum plene interpretatus est Ioannes Franciscus Champollion. Ab opere eruditorum cumulativo coepit hodiernus scripturae hieroglyphicae linguaeque Aegyptiae a...
1
$begingroup$
This is what I mean as document text image: I want to label the texts in image as separate blocks and my model should detect these labels as classes. NOTE: This is how the end result should be like: The labels like Block 1, Block 2, Block 3,.. should be Logo, Title, Date,.. Others, etc. Work done: First approach : I tried to implement this method via Object Detection, it didn't work. It didn't even detect any text. Second approach : Then I tried it using PixelLink. As this model is build for scene text detection, it detected each and every text in the image. But this method can detect multiple lines of text if the threshold values are increased. But I have no idea how do I add labels to the text blocks. PIXEL_CLS_WEIGHT_all_ones = 'PIXEL_CLS_WEIGHT_all_ones' PIXEL_C...
1
$begingroup$
I have this LSTM model model = Sequential() model.add(Masking(mask_value=0, input_shape=(timesteps, features))) model.add(LSTM(100, dropout=0.2, recurrent_dropout=0.2, return_sequences=False)) model.add(Dense(features, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) and shapes X_train (21, 11, 5), y_train (21, 5) . Each timestep is represented by 5 features and return_sequences is set to False because I want to predict one 5D array (the next timestep) for each input sequence of 11 timesteps. I get the error ValueError: y_true and y_pred have different number of output (5!=1) If I reshape the data as X_train (21, 11, 5), y_train (21, 1, 5) instead I get the error ValueError: Inva...