Keras prediction from saved model
$begingroup$
I created a regression ML model in Keras on a different PC, saved the model, and now I am attempting to create an addition pandas dataframe of 'modeled' data. And finally .sum()
the modelled data.
There is not a lot of wisdom in this experiment, so my methods could most like be improved on... Feel free to give me any tips :)
This script below will take my .h5 model weights and I can recreate the model architecture to make some predictions in keras. Ultimately at the bottom I am attempting to create the additional pandas df, with a data['calcKwh'] = data['kWh'].apply(lambda x:
method..
Opening up the file in Excel, this is how the data looks. One part I am not sure is correct is I am attempting utilize rows in the CSV `data.loc[: , "runTime":"vacation"] Runtime thru vacation, these are my input variables. And the target variable highlighted yellow is kWh.
Scipt.py file runs and calculates 'values' but it doesn't appear to calculate just one sum of the calcKwh
df… I am not sure where I am going wrong..
from keras.models import load_model
from keras.models import Sequential
from keras.layers import Dense
import os
import numpy as np
import pandas as pd
import math
#path to saved model
weights_path = "C:/Users/bbartling/Desktop/EC/kwhFinal_backup.h5"
#load data
data = pd.read_csv("joinedRuntime2.csv", index_col='Date', parse_dates=True)
def create_model():
model = Sequential()
model.add(Dense(60, input_dim=7, kernel_initializer='normal', activation='relu'))
model.add(Dense(55, kernel_initializer='normal', activation='relu'))
model.add(Dense(50, kernel_initializer='normal', activation='relu'))
model.add(Dense(45, kernel_initializer='normal', activation='relu'))
model.add(Dense(30, kernel_initializer='normal', activation='relu'))
model.add(Dense(20, kernel_initializer='normal', activation='relu'))
model.add(Dense(1, kernel_initializer='normal'))
return model
def load_trained_model(weights_path):
model = create_model()
model.load_weights(weights_path)
return model
#select columns in the CSV runTime thru vacation
params = np.array(data.loc[: , "runTime":"vacation"])
if (params.ndim == 1):
params = np.array([params])
data['calcKwh'] = data['kWh'].apply(lambda x: load_trained_model(weights_path).predict(params))
print(data['calcKwh'].sum())
machine-learning python keras regression data-science-model
$endgroup$
add a comment |
$begingroup$
I created a regression ML model in Keras on a different PC, saved the model, and now I am attempting to create an addition pandas dataframe of 'modeled' data. And finally .sum()
the modelled data.
There is not a lot of wisdom in this experiment, so my methods could most like be improved on... Feel free to give me any tips :)
This script below will take my .h5 model weights and I can recreate the model architecture to make some predictions in keras. Ultimately at the bottom I am attempting to create the additional pandas df, with a data['calcKwh'] = data['kWh'].apply(lambda x:
method..
Opening up the file in Excel, this is how the data looks. One part I am not sure is correct is I am attempting utilize rows in the CSV `data.loc[: , "runTime":"vacation"] Runtime thru vacation, these are my input variables. And the target variable highlighted yellow is kWh.
Scipt.py file runs and calculates 'values' but it doesn't appear to calculate just one sum of the calcKwh
df… I am not sure where I am going wrong..
from keras.models import load_model
from keras.models import Sequential
from keras.layers import Dense
import os
import numpy as np
import pandas as pd
import math
#path to saved model
weights_path = "C:/Users/bbartling/Desktop/EC/kwhFinal_backup.h5"
#load data
data = pd.read_csv("joinedRuntime2.csv", index_col='Date', parse_dates=True)
def create_model():
model = Sequential()
model.add(Dense(60, input_dim=7, kernel_initializer='normal', activation='relu'))
model.add(Dense(55, kernel_initializer='normal', activation='relu'))
model.add(Dense(50, kernel_initializer='normal', activation='relu'))
model.add(Dense(45, kernel_initializer='normal', activation='relu'))
model.add(Dense(30, kernel_initializer='normal', activation='relu'))
model.add(Dense(20, kernel_initializer='normal', activation='relu'))
model.add(Dense(1, kernel_initializer='normal'))
return model
def load_trained_model(weights_path):
model = create_model()
model.load_weights(weights_path)
return model
#select columns in the CSV runTime thru vacation
params = np.array(data.loc[: , "runTime":"vacation"])
if (params.ndim == 1):
params = np.array([params])
data['calcKwh'] = data['kWh'].apply(lambda x: load_trained_model(weights_path).predict(params))
print(data['calcKwh'].sum())
machine-learning python keras regression data-science-model
$endgroup$
add a comment |
$begingroup$
I created a regression ML model in Keras on a different PC, saved the model, and now I am attempting to create an addition pandas dataframe of 'modeled' data. And finally .sum()
the modelled data.
There is not a lot of wisdom in this experiment, so my methods could most like be improved on... Feel free to give me any tips :)
This script below will take my .h5 model weights and I can recreate the model architecture to make some predictions in keras. Ultimately at the bottom I am attempting to create the additional pandas df, with a data['calcKwh'] = data['kWh'].apply(lambda x:
method..
Opening up the file in Excel, this is how the data looks. One part I am not sure is correct is I am attempting utilize rows in the CSV `data.loc[: , "runTime":"vacation"] Runtime thru vacation, these are my input variables. And the target variable highlighted yellow is kWh.
Scipt.py file runs and calculates 'values' but it doesn't appear to calculate just one sum of the calcKwh
df… I am not sure where I am going wrong..
from keras.models import load_model
from keras.models import Sequential
from keras.layers import Dense
import os
import numpy as np
import pandas as pd
import math
#path to saved model
weights_path = "C:/Users/bbartling/Desktop/EC/kwhFinal_backup.h5"
#load data
data = pd.read_csv("joinedRuntime2.csv", index_col='Date', parse_dates=True)
def create_model():
model = Sequential()
model.add(Dense(60, input_dim=7, kernel_initializer='normal', activation='relu'))
model.add(Dense(55, kernel_initializer='normal', activation='relu'))
model.add(Dense(50, kernel_initializer='normal', activation='relu'))
model.add(Dense(45, kernel_initializer='normal', activation='relu'))
model.add(Dense(30, kernel_initializer='normal', activation='relu'))
model.add(Dense(20, kernel_initializer='normal', activation='relu'))
model.add(Dense(1, kernel_initializer='normal'))
return model
def load_trained_model(weights_path):
model = create_model()
model.load_weights(weights_path)
return model
#select columns in the CSV runTime thru vacation
params = np.array(data.loc[: , "runTime":"vacation"])
if (params.ndim == 1):
params = np.array([params])
data['calcKwh'] = data['kWh'].apply(lambda x: load_trained_model(weights_path).predict(params))
print(data['calcKwh'].sum())
machine-learning python keras regression data-science-model
$endgroup$
I created a regression ML model in Keras on a different PC, saved the model, and now I am attempting to create an addition pandas dataframe of 'modeled' data. And finally .sum()
the modelled data.
There is not a lot of wisdom in this experiment, so my methods could most like be improved on... Feel free to give me any tips :)
This script below will take my .h5 model weights and I can recreate the model architecture to make some predictions in keras. Ultimately at the bottom I am attempting to create the additional pandas df, with a data['calcKwh'] = data['kWh'].apply(lambda x:
method..
Opening up the file in Excel, this is how the data looks. One part I am not sure is correct is I am attempting utilize rows in the CSV `data.loc[: , "runTime":"vacation"] Runtime thru vacation, these are my input variables. And the target variable highlighted yellow is kWh.
Scipt.py file runs and calculates 'values' but it doesn't appear to calculate just one sum of the calcKwh
df… I am not sure where I am going wrong..
from keras.models import load_model
from keras.models import Sequential
from keras.layers import Dense
import os
import numpy as np
import pandas as pd
import math
#path to saved model
weights_path = "C:/Users/bbartling/Desktop/EC/kwhFinal_backup.h5"
#load data
data = pd.read_csv("joinedRuntime2.csv", index_col='Date', parse_dates=True)
def create_model():
model = Sequential()
model.add(Dense(60, input_dim=7, kernel_initializer='normal', activation='relu'))
model.add(Dense(55, kernel_initializer='normal', activation='relu'))
model.add(Dense(50, kernel_initializer='normal', activation='relu'))
model.add(Dense(45, kernel_initializer='normal', activation='relu'))
model.add(Dense(30, kernel_initializer='normal', activation='relu'))
model.add(Dense(20, kernel_initializer='normal', activation='relu'))
model.add(Dense(1, kernel_initializer='normal'))
return model
def load_trained_model(weights_path):
model = create_model()
model.load_weights(weights_path)
return model
#select columns in the CSV runTime thru vacation
params = np.array(data.loc[: , "runTime":"vacation"])
if (params.ndim == 1):
params = np.array([params])
data['calcKwh'] = data['kWh'].apply(lambda x: load_trained_model(weights_path).predict(params))
print(data['calcKwh'].sum())
machine-learning python keras regression data-science-model
machine-learning python keras regression data-science-model
asked 2 days ago
HenryHubHenryHub
1567
1567
add a comment |
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "557"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f46944%2fkeras-prediction-from-saved-model%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Data Science Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f46944%2fkeras-prediction-from-saved-model%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown