Applying function on non-null values of two columns in a data frame












0












$begingroup$


I am trying to apply a function on a data frame, the function calculates fuzzy matching and Jellyfish features on two columns. I want this function to do the calculation only on non-null values, even if there is a null in one of the columns.



def feat1(df, col1, col2):
features = [hamming_distance,jaro_winkler,damerau_levenshtein_distance,ratio,partial_ratio,partial_token_set_ratio,partial_token_sort_ratio]
for j in features:
df[str.split(col1,sep='_')[0]+'_'+str.split(j,)] =
df[[col1,col2]].apply(
lambda row: j(row[col1], row[col2])
if (pd.notnull(row[col1]) & pd.notnull(row[col2]))
else np.NaN,axis=1)


But I am getting the following error:



TypeError Traceback (most recent call last) in ----> 1 feat1(dfCart,'FirstName_x','FirstName_y')

in feat1(df, col1, col2) 2 features=[hamming_distance,jaro_winkler,damerau_levenshtein_distance,ratio,partial_ratio,partial_token_set_ratio,partial_token_sort_ratio] 3 for j in features: ----> 4 df[str.split(col1,sep='')[0]+''+str.split(j,)]=df[[col1,col2]].apply(lambda row: j(row[col1],row[col2]) if (pd.notnull(row[col1]) & pd.notnull(row[col2])) else np.NaN,axis=1)

TypeError: descriptor 'split' requires a 'str' object but received a 'builtin_function_or_method'

TypeError Traceback (most recent call last) in ----> 1 feat1(dfCart,'FirstName_x','FirstName_y')

in feat1(df, col1, col2) 2 features=[hamming_distance,jaro_winkler,damerau_levenshtein_distance,ratio,partial_ratio,partial_token_set_ratio,partial_token_sort_ratio] 3 for j in features: ----> 4 df[str.split(col1,sep='')[0]+''+str.split(j,)]=df[[col1,col2]].apply(lambda row: j(row[col1],row[col2]) if (pd.notnull(row[col1]) & pd.notnull(row[col2])) else np.NaN,axis=1)

TypeError: descriptor 'split' requires a 'str' object but received a 'builtin_function_or_method'


What's the cause of the error?










share|improve this question











$endgroup$








  • 1




    $begingroup$
    This is probably more suited to StackOverflow. Anyway, I think the problem is the str.split(j,): j is a function, (j,) is an iterable with only a function as a member, and str.split expects an iterable of str. You could adapt your code to have pairs of (distance_function, name): features = [(hamming_distance, 'Hamming distance'), (jaro_winkler, 'Jaro-Winkler'), ...].
    $endgroup$
    – Mephy
    2 days ago
















0












$begingroup$


I am trying to apply a function on a data frame, the function calculates fuzzy matching and Jellyfish features on two columns. I want this function to do the calculation only on non-null values, even if there is a null in one of the columns.



def feat1(df, col1, col2):
features = [hamming_distance,jaro_winkler,damerau_levenshtein_distance,ratio,partial_ratio,partial_token_set_ratio,partial_token_sort_ratio]
for j in features:
df[str.split(col1,sep='_')[0]+'_'+str.split(j,)] =
df[[col1,col2]].apply(
lambda row: j(row[col1], row[col2])
if (pd.notnull(row[col1]) & pd.notnull(row[col2]))
else np.NaN,axis=1)


But I am getting the following error:



TypeError Traceback (most recent call last) in ----> 1 feat1(dfCart,'FirstName_x','FirstName_y')

in feat1(df, col1, col2) 2 features=[hamming_distance,jaro_winkler,damerau_levenshtein_distance,ratio,partial_ratio,partial_token_set_ratio,partial_token_sort_ratio] 3 for j in features: ----> 4 df[str.split(col1,sep='')[0]+''+str.split(j,)]=df[[col1,col2]].apply(lambda row: j(row[col1],row[col2]) if (pd.notnull(row[col1]) & pd.notnull(row[col2])) else np.NaN,axis=1)

TypeError: descriptor 'split' requires a 'str' object but received a 'builtin_function_or_method'

TypeError Traceback (most recent call last) in ----> 1 feat1(dfCart,'FirstName_x','FirstName_y')

in feat1(df, col1, col2) 2 features=[hamming_distance,jaro_winkler,damerau_levenshtein_distance,ratio,partial_ratio,partial_token_set_ratio,partial_token_sort_ratio] 3 for j in features: ----> 4 df[str.split(col1,sep='')[0]+''+str.split(j,)]=df[[col1,col2]].apply(lambda row: j(row[col1],row[col2]) if (pd.notnull(row[col1]) & pd.notnull(row[col2])) else np.NaN,axis=1)

TypeError: descriptor 'split' requires a 'str' object but received a 'builtin_function_or_method'


What's the cause of the error?










share|improve this question











$endgroup$








  • 1




    $begingroup$
    This is probably more suited to StackOverflow. Anyway, I think the problem is the str.split(j,): j is a function, (j,) is an iterable with only a function as a member, and str.split expects an iterable of str. You could adapt your code to have pairs of (distance_function, name): features = [(hamming_distance, 'Hamming distance'), (jaro_winkler, 'Jaro-Winkler'), ...].
    $endgroup$
    – Mephy
    2 days ago














0












0








0





$begingroup$


I am trying to apply a function on a data frame, the function calculates fuzzy matching and Jellyfish features on two columns. I want this function to do the calculation only on non-null values, even if there is a null in one of the columns.



def feat1(df, col1, col2):
features = [hamming_distance,jaro_winkler,damerau_levenshtein_distance,ratio,partial_ratio,partial_token_set_ratio,partial_token_sort_ratio]
for j in features:
df[str.split(col1,sep='_')[0]+'_'+str.split(j,)] =
df[[col1,col2]].apply(
lambda row: j(row[col1], row[col2])
if (pd.notnull(row[col1]) & pd.notnull(row[col2]))
else np.NaN,axis=1)


But I am getting the following error:



TypeError Traceback (most recent call last) in ----> 1 feat1(dfCart,'FirstName_x','FirstName_y')

in feat1(df, col1, col2) 2 features=[hamming_distance,jaro_winkler,damerau_levenshtein_distance,ratio,partial_ratio,partial_token_set_ratio,partial_token_sort_ratio] 3 for j in features: ----> 4 df[str.split(col1,sep='')[0]+''+str.split(j,)]=df[[col1,col2]].apply(lambda row: j(row[col1],row[col2]) if (pd.notnull(row[col1]) & pd.notnull(row[col2])) else np.NaN,axis=1)

TypeError: descriptor 'split' requires a 'str' object but received a 'builtin_function_or_method'

TypeError Traceback (most recent call last) in ----> 1 feat1(dfCart,'FirstName_x','FirstName_y')

in feat1(df, col1, col2) 2 features=[hamming_distance,jaro_winkler,damerau_levenshtein_distance,ratio,partial_ratio,partial_token_set_ratio,partial_token_sort_ratio] 3 for j in features: ----> 4 df[str.split(col1,sep='')[0]+''+str.split(j,)]=df[[col1,col2]].apply(lambda row: j(row[col1],row[col2]) if (pd.notnull(row[col1]) & pd.notnull(row[col2])) else np.NaN,axis=1)

TypeError: descriptor 'split' requires a 'str' object but received a 'builtin_function_or_method'


What's the cause of the error?










share|improve this question











$endgroup$




I am trying to apply a function on a data frame, the function calculates fuzzy matching and Jellyfish features on two columns. I want this function to do the calculation only on non-null values, even if there is a null in one of the columns.



def feat1(df, col1, col2):
features = [hamming_distance,jaro_winkler,damerau_levenshtein_distance,ratio,partial_ratio,partial_token_set_ratio,partial_token_sort_ratio]
for j in features:
df[str.split(col1,sep='_')[0]+'_'+str.split(j,)] =
df[[col1,col2]].apply(
lambda row: j(row[col1], row[col2])
if (pd.notnull(row[col1]) & pd.notnull(row[col2]))
else np.NaN,axis=1)


But I am getting the following error:



TypeError Traceback (most recent call last) in ----> 1 feat1(dfCart,'FirstName_x','FirstName_y')

in feat1(df, col1, col2) 2 features=[hamming_distance,jaro_winkler,damerau_levenshtein_distance,ratio,partial_ratio,partial_token_set_ratio,partial_token_sort_ratio] 3 for j in features: ----> 4 df[str.split(col1,sep='')[0]+''+str.split(j,)]=df[[col1,col2]].apply(lambda row: j(row[col1],row[col2]) if (pd.notnull(row[col1]) & pd.notnull(row[col2])) else np.NaN,axis=1)

TypeError: descriptor 'split' requires a 'str' object but received a 'builtin_function_or_method'

TypeError Traceback (most recent call last) in ----> 1 feat1(dfCart,'FirstName_x','FirstName_y')

in feat1(df, col1, col2) 2 features=[hamming_distance,jaro_winkler,damerau_levenshtein_distance,ratio,partial_ratio,partial_token_set_ratio,partial_token_sort_ratio] 3 for j in features: ----> 4 df[str.split(col1,sep='')[0]+''+str.split(j,)]=df[[col1,col2]].apply(lambda row: j(row[col1],row[col2]) if (pd.notnull(row[col1]) & pd.notnull(row[col2])) else np.NaN,axis=1)

TypeError: descriptor 'split' requires a 'str' object but received a 'builtin_function_or_method'


What's the cause of the error?







python dataframe






share|improve this question















share|improve this question













share|improve this question




share|improve this question








edited yesterday









Mephy

683418




683418










asked 2 days ago









GNJGNJ

1




1








  • 1




    $begingroup$
    This is probably more suited to StackOverflow. Anyway, I think the problem is the str.split(j,): j is a function, (j,) is an iterable with only a function as a member, and str.split expects an iterable of str. You could adapt your code to have pairs of (distance_function, name): features = [(hamming_distance, 'Hamming distance'), (jaro_winkler, 'Jaro-Winkler'), ...].
    $endgroup$
    – Mephy
    2 days ago














  • 1




    $begingroup$
    This is probably more suited to StackOverflow. Anyway, I think the problem is the str.split(j,): j is a function, (j,) is an iterable with only a function as a member, and str.split expects an iterable of str. You could adapt your code to have pairs of (distance_function, name): features = [(hamming_distance, 'Hamming distance'), (jaro_winkler, 'Jaro-Winkler'), ...].
    $endgroup$
    – Mephy
    2 days ago








1




1




$begingroup$
This is probably more suited to StackOverflow. Anyway, I think the problem is the str.split(j,): j is a function, (j,) is an iterable with only a function as a member, and str.split expects an iterable of str. You could adapt your code to have pairs of (distance_function, name): features = [(hamming_distance, 'Hamming distance'), (jaro_winkler, 'Jaro-Winkler'), ...].
$endgroup$
– Mephy
2 days ago




$begingroup$
This is probably more suited to StackOverflow. Anyway, I think the problem is the str.split(j,): j is a function, (j,) is an iterable with only a function as a member, and str.split expects an iterable of str. You could adapt your code to have pairs of (distance_function, name): features = [(hamming_distance, 'Hamming distance'), (jaro_winkler, 'Jaro-Winkler'), ...].
$endgroup$
– Mephy
2 days ago










0






active

oldest

votes











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "557"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f46928%2fapplying-function-on-non-null-values-of-two-columns-in-a-data-frame%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























0






active

oldest

votes








0






active

oldest

votes









active

oldest

votes






active

oldest

votes
















draft saved

draft discarded




















































Thanks for contributing an answer to Data Science Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f46928%2fapplying-function-on-non-null-values-of-two-columns-in-a-data-frame%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

How to label and detect the document text images

Tabula Rosettana

Aureus (color)