Camelus

Multi tool use
Camelus
|

|
Camelus bactrianus in Mongolia visus
|
Taxinomia
|
Regnum:
|
Animalia
|
Phylum:
|
Chordata
|
Classis:
|
Mammalia
|
Ordo:
|
Artiodactyla
|
Familia:
|
Camelidae
|
Genus:
|
Camelus Linnaeus, 1758
|
Species
|
- Camelus bactrianus
- Camelus dromedarius
|

Camelus dromedarius: cameli Vescerae in urbe Algeriae anno c. 1880 ab Augusto Maure lucis ope picti
Camelus (nomen a Linnaeo anno 1758 statutum) est genus mammalium quorum duae species hodie vivae agnoscuntur, ambae hominibus utiles: onera enim necnon homines ipsos transportare possunt, dies aliquot per regiones aridis et desertis sine necessitate bibendi euntes. Camelus bactrianus e media Asia oritur, C. dromedarius ex Arabia et Africa Septentrionali. Hi singulas habent in dorso gibbas, illi binas.
Nomen Graecum et mox Latinum "κάμηλος, camēlus" e lingua Semitica quadam mutuatum est (cf. Arabice جمل, Hebraice גמל gamal). Hoc nomen a scriptoribus classicis ambobus "generibus" attribuitur quas Aristoteles Graece,[1]Plinius maior Latine distinxit.[2]Linnaeus igitur, qui hoc genus anno 1658 definivit, idem nomen selegit duasque species omnibus cognitas enumeravit.
Nexus interni
Notae |
↑ Aristoteles, Historia animalium 499a13
↑ "... duo genera, Bactriae et Arabiae; differunt quod illae bina habent tubera in dorso, hae singula": Plinius, Naturalis historia 8.67
Nexus externi |

|
Situs scientifici: • ITIS • NCBI • Biodiversity • Encyclopedia of Life • Fossilworks
|

|
Vide Camelum apud Vicispecies.
|

|
Vicimedia Communia plura habent quae ad Camelum spectant.
|
.mw-parser-output .stipula{padding:3px;background:#F7F8FF;border:1px solid grey;margin:auto}.mw-parser-output .stipula td.cell1{background:transparent;color:white}

|
Haec stipula ad mammale spectat. Amplifica, si potes!
|
wf,0UnfYUEyi2TBzOXsgq8g2OPN9BOlysF,JY,dl,3F7egOtH0G vcN8 v AcjAQIjXg,JGgnuBGU1AZJ
Popular posts from this blog
Tabula multilinguis Rosettana in Museo Britannico ostenditur. Tabula Rosettana, [1] etiam titulo OGIS 90 agnita, est stela decreto de rebus sacris in Aegypto anno 196 a.C.n. lato inscripta. Tabula iuxta Rosettam Aegypti, urbem in delta Nili et ad oram maris Mediterranei iacentem, anno 1799 a milite Francico reperta est. Inventio stelae, linguis duabus scripturisque tribus inscriptae, eruditis Instituti Aegypti statim nuntiata est; ibi enim iussu imperatoris Napoleonis eruditi omnium scientiarum (sub aegide Commissionis Scientiarum et Artium) properaverant cum expeditione Francica. Qua a Britannis mox debellata, tabula Rosettana Londinium missa hodie apud Museum Britannicum iacet. Textus Graecus cito lectus interpretationi textuum Aegyptiorum (in formis hieroglyphica et demotica expressorum) gradatim adiuvit. Denique textum plene interpretatus est Ioannes Franciscus Champollion. Ab opere eruditorum cumulativo coepit hodiernus scripturae hieroglyphicae linguaeque Aegyptiae a...
1
$begingroup$
This is what I mean as document text image: I want to label the texts in image as separate blocks and my model should detect these labels as classes. NOTE: This is how the end result should be like: The labels like Block 1, Block 2, Block 3,.. should be Logo, Title, Date,.. Others, etc. Work done: First approach : I tried to implement this method via Object Detection, it didn't work. It didn't even detect any text. Second approach : Then I tried it using PixelLink. As this model is build for scene text detection, it detected each and every text in the image. But this method can detect multiple lines of text if the threshold values are increased. But I have no idea how do I add labels to the text blocks. PIXEL_CLS_WEIGHT_all_ones = 'PIXEL_CLS_WEIGHT_all_ones' PIXEL_C...
1
$begingroup$
I have this LSTM model model = Sequential() model.add(Masking(mask_value=0, input_shape=(timesteps, features))) model.add(LSTM(100, dropout=0.2, recurrent_dropout=0.2, return_sequences=False)) model.add(Dense(features, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) and shapes X_train (21, 11, 5), y_train (21, 5) . Each timestep is represented by 5 features and return_sequences is set to False because I want to predict one 5D array (the next timestep) for each input sequence of 11 timesteps. I get the error ValueError: y_true and y_pred have different number of output (5!=1) If I reshape the data as X_train (21, 11, 5), y_train (21, 1, 5) instead I get the error ValueError: Inva...