Iohannes von Neumann

Multi tool use

Iohannes von Neumann
Res apud Vicidata repertae:
Nativitas:
28 Decembris 1903;
BudapestinumObitus:
8 Februarii 1957;
Walter Reed Army Medical CenterPatria:
Hungaria, Civitates Foederatae Americae, Imperium Austro-HungaricumNomen nativum:
Margittai Neumann János Lajos
Officium
Munus: mathematicus, computer scientist, chemicus, physicus, engineer, Inventor, Oeconomus, nuclear scientist, professor
Patronus: Universitas Princetoniensis, Alma Universitas Humboldtiana Berolinensis, United States Atomic Energy Commission
Consociatio
Religio: Apostasy in Catholicism
Familia
Coniunx: Klara Dan von Neumann
Proles: Marina von Neumann Whitman
Memoria
Laurae: Praemium Praesidis pro Libertate, Carl-Gustaf Rossby Research Medal, Bôcher Memorial Prize, Enrico Fermi Award, Josiah Willard Gibbs Lectureship, Fellow of the American Physical Society, Silliman Memorial Lectures, Fellow of the Econometric Society
Sepultura: Princeton Cemetery
Iohannes von Neumann (Aquinci die 28 Decembris 1903 natus; Vasingtoniae die 8 Februarii 1957 mortuus) fuit illustris mathematicus Americanus oriundus e Hungaria. Von Neumann polumathus qui et logicae, armae nucleariae, oeconomiae et statisticae peritus et inter computatra humana et informaticam (Architectura von Neumann) numeratur. Miksa, pater eius, magister iurisprudentiae erat. Iam puerum homines mirabantur iocos Graece facientem. Iam sex annos natus peritus calculi mente binos octavos numeros dividebat.
Nexus externi |

|
Vicimedia Communia plura habent quae ad Iohannem von Neumann spectant.
|
Opera ab hoc homine vel de eo scripta apud Bibliothecam Nationalem Germanicam .mw-parser-output .existinglinksgray a,.mw-parser-output .existinglinksgray a:visited{color:gray}.mw-parser-output .existinglinksgray a.new{color:#ba0000}.mw-parser-output .existinglinksgray a.new:visited{color:#a55858}
(Theodisce)
.mw-parser-output .stipula{padding:3px;background:#F7F8FF;border:1px solid grey;margin:auto}.mw-parser-output .stipula td.cell1{background:transparent;color:white}

|
Haec stipula ad biographiam spectat. Amplifica, si potes!
|
gNexCUI,ks2sfI,23
Popular posts from this blog
Tabula multilinguis Rosettana in Museo Britannico ostenditur. Tabula Rosettana, [1] etiam titulo OGIS 90 agnita, est stela decreto de rebus sacris in Aegypto anno 196 a.C.n. lato inscripta. Tabula iuxta Rosettam Aegypti, urbem in delta Nili et ad oram maris Mediterranei iacentem, anno 1799 a milite Francico reperta est. Inventio stelae, linguis duabus scripturisque tribus inscriptae, eruditis Instituti Aegypti statim nuntiata est; ibi enim iussu imperatoris Napoleonis eruditi omnium scientiarum (sub aegide Commissionis Scientiarum et Artium) properaverant cum expeditione Francica. Qua a Britannis mox debellata, tabula Rosettana Londinium missa hodie apud Museum Britannicum iacet. Textus Graecus cito lectus interpretationi textuum Aegyptiorum (in formis hieroglyphica et demotica expressorum) gradatim adiuvit. Denique textum plene interpretatus est Ioannes Franciscus Champollion. Ab opere eruditorum cumulativo coepit hodiernus scripturae hieroglyphicae linguaeque Aegyptiae a...
1
$begingroup$
This is what I mean as document text image: I want to label the texts in image as separate blocks and my model should detect these labels as classes. NOTE: This is how the end result should be like: The labels like Block 1, Block 2, Block 3,.. should be Logo, Title, Date,.. Others, etc. Work done: First approach : I tried to implement this method via Object Detection, it didn't work. It didn't even detect any text. Second approach : Then I tried it using PixelLink. As this model is build for scene text detection, it detected each and every text in the image. But this method can detect multiple lines of text if the threshold values are increased. But I have no idea how do I add labels to the text blocks. PIXEL_CLS_WEIGHT_all_ones = 'PIXEL_CLS_WEIGHT_all_ones' PIXEL_C...
1
$begingroup$
I have this LSTM model model = Sequential() model.add(Masking(mask_value=0, input_shape=(timesteps, features))) model.add(LSTM(100, dropout=0.2, recurrent_dropout=0.2, return_sequences=False)) model.add(Dense(features, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) and shapes X_train (21, 11, 5), y_train (21, 5) . Each timestep is represented by 5 features and return_sequences is set to False because I want to predict one 5D array (the next timestep) for each input sequence of 11 timesteps. I get the error ValueError: y_true and y_pred have different number of output (5!=1) If I reshape the data as X_train (21, 11, 5), y_train (21, 1, 5) instead I get the error ValueError: Inva...