Erythrae (Ionia)

Multi tool use
Vide etiam paginam discretivam: Erythrae (discretiva)

Ruinae amphitheatri Erythrarum
Erythrae, -arum f. (Graece Ἐρυθραί, Neograece Λυθρί, Turcice Ildırı) est oppidum parvum Turciae quae sub monte Coryco iacet inter ruinas urbis satis clari Ioniae antiquae. Ibi olim vites cultae sunt. Archestratus igitur de φερεσταφύλοις Ἐρυθραῖς scil. "Erythris viniferis" cantat (vide infra); incolae Mimantis montis, qui ad boream versus surgit, Herculem adorabant "Ipoctonum", scilicet qui ipes vitium interficit.[1] Ibi et silvae virebant venatoribus prosperae.[2] Panem Erythrarum pistoresque Lydos laudavit saeculo IV a.C.n. Archestratus:
Principio munus eloquar Cereris
|
Πρῶτα μὲν οὖν δώρων μεμνήσομαι ἠυκόμοιο
|
pulchra coma ornatae, amice Mosche: haec vero tu mente repone.
|
Δήμητρος, φίλε Μόσχε· σὺ δ´ ἐν φρεσὶ βάλλεο σῇσιν ...
|
qui Erythris uvarum fertilibus clibano educitur,
|
ἐν δὲ φερεσταφύλοις Ἐρυθραῖς ἐκ κλιβάνου ἐλθὼν
|
albus, speciosa pulchritudine nitens, cenantem te oblectabit ...
|
λευκὸς ἁβραῖς θάλλων ὥραις τέρψει παρὰ δεῖπνον ...
|
Esto tibi domi Phoenix quidam aut Lydus
|
Ἔστω δή σοι ἀνὴρ Φοῖνιξ ἢ Λυδὸς ἐν οἴκῳ,
|
Qui tui palati gnarus quotidie
|
ὅστις ἐπιστήμων ἔσται σίτοιο κατ´ ἦμαρ
|
Ut iusseris omnifarias panis species conficiat.[3]
|
παντοίας ἰδέας τεύχειν, ὡς ἂν σὺ κελεύῃς.[4]
|
Notae |
↑ Strabo, Geographica 13.1.64
↑ Strabo, Geographica 14.1.33
↑ Versio Dalechampii
↑ Archestratus, Hedypathia frr. 5-6 Olson et Sens apud Athenaei Deipnosophistas 111e, 112b
Nexus externi |
Erythrae inter urbes Ioniae .mw-parser-output .existinglinksgray a,.mw-parser-output .existinglinksgray a:visited{color:gray}.mw-parser-output .existinglinksgray a.new{color:#ba0000}.mw-parser-output .existinglinksgray a.new:visited{color:#a55858}
(Francogallice)
Bibliographia |
- "Erythrae" in William Smith, ed., Dictionary of Greek and Roman Geography (Londinii, 1854) textus
- "Erythrae" in Richard Stillwell et al., The Princeton Encyclopedia of Classical Sites (Princeton, 1976) Textus
Nn,bbYYrdQteL0ODrKTj0DV,5mRuHf ZAyYoKLEcquL587LbU3h v9b2sMm,u38CwuZJZh5It
Popular posts from this blog
Tabula multilinguis Rosettana in Museo Britannico ostenditur. Tabula Rosettana, [1] etiam titulo OGIS 90 agnita, est stela decreto de rebus sacris in Aegypto anno 196 a.C.n. lato inscripta. Tabula iuxta Rosettam Aegypti, urbem in delta Nili et ad oram maris Mediterranei iacentem, anno 1799 a milite Francico reperta est. Inventio stelae, linguis duabus scripturisque tribus inscriptae, eruditis Instituti Aegypti statim nuntiata est; ibi enim iussu imperatoris Napoleonis eruditi omnium scientiarum (sub aegide Commissionis Scientiarum et Artium) properaverant cum expeditione Francica. Qua a Britannis mox debellata, tabula Rosettana Londinium missa hodie apud Museum Britannicum iacet. Textus Graecus cito lectus interpretationi textuum Aegyptiorum (in formis hieroglyphica et demotica expressorum) gradatim adiuvit. Denique textum plene interpretatus est Ioannes Franciscus Champollion. Ab opere eruditorum cumulativo coepit hodiernus scripturae hieroglyphicae linguaeque Aegyptiae a...
1
$begingroup$
This is what I mean as document text image: I want to label the texts in image as separate blocks and my model should detect these labels as classes. NOTE: This is how the end result should be like: The labels like Block 1, Block 2, Block 3,.. should be Logo, Title, Date,.. Others, etc. Work done: First approach : I tried to implement this method via Object Detection, it didn't work. It didn't even detect any text. Second approach : Then I tried it using PixelLink. As this model is build for scene text detection, it detected each and every text in the image. But this method can detect multiple lines of text if the threshold values are increased. But I have no idea how do I add labels to the text blocks. PIXEL_CLS_WEIGHT_all_ones = 'PIXEL_CLS_WEIGHT_all_ones' PIXEL_C...
1
$begingroup$
I have this LSTM model model = Sequential() model.add(Masking(mask_value=0, input_shape=(timesteps, features))) model.add(LSTM(100, dropout=0.2, recurrent_dropout=0.2, return_sequences=False)) model.add(Dense(features, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) and shapes X_train (21, 11, 5), y_train (21, 5) . Each timestep is represented by 5 features and return_sequences is set to False because I want to predict one 5D array (the next timestep) for each input sequence of 11 timesteps. I get the error ValueError: y_true and y_pred have different number of output (5!=1) If I reshape the data as X_train (21, 11, 5), y_train (21, 1, 5) instead I get the error ValueError: Inva...