Columbopolis

Multi tool use
Columbopolis (Ohium)
|

|
|
|
|
|
 Locus in Ohio
|
Natio
|
Civitates Foederatae
|
Civitas
|
Ohium
|
Comitatus
|
Franklin Deleware Fairfield
|
Gubernatio
|
Praefectus
|
Michael B. Coleman (D)
|
Superficies
|
Tota
|
550.5 km²
|
Aqua
|
5.9 km² (1.1%)
|
Multitudo
|
Tota (2006)
|
733,203
|
In regione
|
1,725,570
|
Densitas
|
1306.4/km²
|
Regio temporis
|
UTC − 5 (UTC − 4 in aestate)
|
Columbopolis
|
Columbopolis[1] est urbs maxima et caput civitatis Ohii. Anno 2005 urbs erat quinta decima a maxima in Civitatibus Foederatis Americae.
Anno 1812 condita est et ex Christophoro Columbo nominata.
Notae |
↑ Carolus Egger, Diurnarius Latinus. Epitome actorum diurnorum in lingua Latina. (1980. ISBN 88-209-4366-2) p. 11
Nexus externus |

|
Vicimedia Communia plura habent quae ad Columbopolin spectant.
|
.mw-parser-output .stipula{padding:3px;background:#F7F8FF;border:1px solid grey;margin:auto}.mw-parser-output .stipula td.cell1{background:transparent;color:white}

|
Haec stipula ad urbem spectat. Amplifica, si potes!
|
Urbes Civitatum Foederatarum maximae
Albuquerque · Angelopolis · Antoniopolis · Arlintonia · Arx Vorthensis · Atlanta · Austinopolis · Baltimora · Bostonia · Campi · Carolinum · Cleveland · Columbopolis · Dallasium · Denverium · Detroitum · Didacopolis · El Paso · Fontes Coloratenses · Franciscopolis · Fresno · Honolulu · Hustonia · Indianapolis · Iosephopolis · Jacksonville · Kansanopolis · Litus Virginiae · Long Beach · Ludovicopolis · Memphis · Mesa · Miamia · Milvauchia · Minneapolis · Nasburgum · Nova Aurelia · Novum Eboracum · Oklahomapolis · Omaha · Philadelphia · Phoenix · Portlandia · Quercupolis · Sacramentum · Seattlum · Sicagum · Tucson · Tulsa · Vasingtonia · Wichita
Opus geopoliticum • Index urbium maximarum Civitatum Foederatarum • Maximae urbes orbis terrarum • Porta Civitatum Foederatarum
Capsae cognatae: Urbes maximae Americae Septentrionalis
WZk3l6NAPGT1XY1o1Ayj rwpqqK,AZ1 HZKkQI4Ez,AVZz s16FkgC5B7OZzmPzQ3uHVFjz7MGh1itO8YkFwr1zWTR6y,k
Popular posts from this blog
Tabula multilinguis Rosettana in Museo Britannico ostenditur. Tabula Rosettana, [1] etiam titulo OGIS 90 agnita, est stela decreto de rebus sacris in Aegypto anno 196 a.C.n. lato inscripta. Tabula iuxta Rosettam Aegypti, urbem in delta Nili et ad oram maris Mediterranei iacentem, anno 1799 a milite Francico reperta est. Inventio stelae, linguis duabus scripturisque tribus inscriptae, eruditis Instituti Aegypti statim nuntiata est; ibi enim iussu imperatoris Napoleonis eruditi omnium scientiarum (sub aegide Commissionis Scientiarum et Artium) properaverant cum expeditione Francica. Qua a Britannis mox debellata, tabula Rosettana Londinium missa hodie apud Museum Britannicum iacet. Textus Graecus cito lectus interpretationi textuum Aegyptiorum (in formis hieroglyphica et demotica expressorum) gradatim adiuvit. Denique textum plene interpretatus est Ioannes Franciscus Champollion. Ab opere eruditorum cumulativo coepit hodiernus scripturae hieroglyphicae linguaeque Aegyptiae a...
1
$begingroup$
This is what I mean as document text image: I want to label the texts in image as separate blocks and my model should detect these labels as classes. NOTE: This is how the end result should be like: The labels like Block 1, Block 2, Block 3,.. should be Logo, Title, Date,.. Others, etc. Work done: First approach : I tried to implement this method via Object Detection, it didn't work. It didn't even detect any text. Second approach : Then I tried it using PixelLink. As this model is build for scene text detection, it detected each and every text in the image. But this method can detect multiple lines of text if the threshold values are increased. But I have no idea how do I add labels to the text blocks. PIXEL_CLS_WEIGHT_all_ones = 'PIXEL_CLS_WEIGHT_all_ones' PIXEL_C...
1
$begingroup$
I have this LSTM model model = Sequential() model.add(Masking(mask_value=0, input_shape=(timesteps, features))) model.add(LSTM(100, dropout=0.2, recurrent_dropout=0.2, return_sequences=False)) model.add(Dense(features, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) and shapes X_train (21, 11, 5), y_train (21, 5) . Each timestep is represented by 5 features and return_sequences is set to False because I want to predict one 5D array (the next timestep) for each input sequence of 11 timesteps. I get the error ValueError: y_true and y_pred have different number of output (5!=1) If I reshape the data as X_train (21, 11, 5), y_train (21, 1, 5) instead I get the error ValueError: Inva...