Finding limit of a (Laurent?) series
$begingroup$
I've been practicing series for my upcoming Calculus 1 exam, and I've stumbled upon this one:
$1 + frac{1}{1 + 2} + frac{1}{1 + 2 + 3} + ... + frac{1}{1 + 2 + 3 + ... + n}$
The task is to find the limit.
sequences-and-series limits
$endgroup$
add a comment |
$begingroup$
I've been practicing series for my upcoming Calculus 1 exam, and I've stumbled upon this one:
$1 + frac{1}{1 + 2} + frac{1}{1 + 2 + 3} + ... + frac{1}{1 + 2 + 3 + ... + n}$
The task is to find the limit.
sequences-and-series limits
$endgroup$
add a comment |
$begingroup$
I've been practicing series for my upcoming Calculus 1 exam, and I've stumbled upon this one:
$1 + frac{1}{1 + 2} + frac{1}{1 + 2 + 3} + ... + frac{1}{1 + 2 + 3 + ... + n}$
The task is to find the limit.
sequences-and-series limits
$endgroup$
I've been practicing series for my upcoming Calculus 1 exam, and I've stumbled upon this one:
$1 + frac{1}{1 + 2} + frac{1}{1 + 2 + 3} + ... + frac{1}{1 + 2 + 3 + ... + n}$
The task is to find the limit.
sequences-and-series limits
sequences-and-series limits
edited 3 hours ago
Max
556116
556116
asked 4 hours ago
RoseRose
166
166
add a comment |
add a comment |
5 Answers
5
active
oldest
votes
$begingroup$
We have $$1+2+...+k=frac{k(k+1)}2$$
So the sum you need to compute is
$$begin{split}
sum_{k=1}^n frac 2{k(k+1)} &= sum_{k=1}^n 2left ( frac 1 k - frac 1 { k+1} right )\
&=2-frac 2 {n+1}\
&=frac {2n} {n+1}
end{split}$$
Now you can take the limit.
$endgroup$
add a comment |
$begingroup$
Hint: Recall the sum of an arithmetic series of consecutive numbers $1,2, cdots, n$:
$$1+2+cdots+n=frac{n(n+1)}{2}$$
Take reciprocal of it and deal with partial fraction, the terms will be eliminated.
$$
frac{2}{n(n+1)}=2(frac{1}{n}-frac{1}{n+1})$$
After that, take the limit.
$endgroup$
add a comment |
$begingroup$
Hint: Use the fact that $$1+2+...+n=frac{n(n+1)}{2}$$
The series then becomes $$2sumlimits_{n=1}^infty left(frac{1}{n} - frac{1}{n+1} right)$$ which is a telescoping series.
$endgroup$
add a comment |
$begingroup$
As $1+2+ldots +n = frac{n}{2}(n+1)$ you are looking for the sum of the series
$S = sum_{n=1}^{infty} frac{1}{frac{k}{2}(k+1)} = 2 sum_{k=1}^{infty} frac{1}{k(k+1)}$.
Nos separating you get that $S_n = 2sum_{k=1}^{n} frac{1}{k} - frac{1}{k+1} = 2(1 - frac{1}{n+1})$. Now taking limit when $n rightarrow infty$ you get that $S=2$
$endgroup$
add a comment |
$begingroup$
$small{a_2=(1+2)^{-1}, a_3= (1+2+3)^{-1},....}$
$small{a_k=(1+2+...k)^{-1} = 2(k(k+1))^{-1}=2(1/k -1/(k+1))}$
Telescopic sum
$1+sum_{k=2}^{infty} a_k =?$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3116293%2ffinding-limit-of-a-laurent-series%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
5 Answers
5
active
oldest
votes
5 Answers
5
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
We have $$1+2+...+k=frac{k(k+1)}2$$
So the sum you need to compute is
$$begin{split}
sum_{k=1}^n frac 2{k(k+1)} &= sum_{k=1}^n 2left ( frac 1 k - frac 1 { k+1} right )\
&=2-frac 2 {n+1}\
&=frac {2n} {n+1}
end{split}$$
Now you can take the limit.
$endgroup$
add a comment |
$begingroup$
We have $$1+2+...+k=frac{k(k+1)}2$$
So the sum you need to compute is
$$begin{split}
sum_{k=1}^n frac 2{k(k+1)} &= sum_{k=1}^n 2left ( frac 1 k - frac 1 { k+1} right )\
&=2-frac 2 {n+1}\
&=frac {2n} {n+1}
end{split}$$
Now you can take the limit.
$endgroup$
add a comment |
$begingroup$
We have $$1+2+...+k=frac{k(k+1)}2$$
So the sum you need to compute is
$$begin{split}
sum_{k=1}^n frac 2{k(k+1)} &= sum_{k=1}^n 2left ( frac 1 k - frac 1 { k+1} right )\
&=2-frac 2 {n+1}\
&=frac {2n} {n+1}
end{split}$$
Now you can take the limit.
$endgroup$
We have $$1+2+...+k=frac{k(k+1)}2$$
So the sum you need to compute is
$$begin{split}
sum_{k=1}^n frac 2{k(k+1)} &= sum_{k=1}^n 2left ( frac 1 k - frac 1 { k+1} right )\
&=2-frac 2 {n+1}\
&=frac {2n} {n+1}
end{split}$$
Now you can take the limit.
edited 7 mins ago
RQM
1213
1213
answered 4 hours ago
Stefan LafonStefan Lafon
1,99218
1,99218
add a comment |
add a comment |
$begingroup$
Hint: Recall the sum of an arithmetic series of consecutive numbers $1,2, cdots, n$:
$$1+2+cdots+n=frac{n(n+1)}{2}$$
Take reciprocal of it and deal with partial fraction, the terms will be eliminated.
$$
frac{2}{n(n+1)}=2(frac{1}{n}-frac{1}{n+1})$$
After that, take the limit.
$endgroup$
add a comment |
$begingroup$
Hint: Recall the sum of an arithmetic series of consecutive numbers $1,2, cdots, n$:
$$1+2+cdots+n=frac{n(n+1)}{2}$$
Take reciprocal of it and deal with partial fraction, the terms will be eliminated.
$$
frac{2}{n(n+1)}=2(frac{1}{n}-frac{1}{n+1})$$
After that, take the limit.
$endgroup$
add a comment |
$begingroup$
Hint: Recall the sum of an arithmetic series of consecutive numbers $1,2, cdots, n$:
$$1+2+cdots+n=frac{n(n+1)}{2}$$
Take reciprocal of it and deal with partial fraction, the terms will be eliminated.
$$
frac{2}{n(n+1)}=2(frac{1}{n}-frac{1}{n+1})$$
After that, take the limit.
$endgroup$
Hint: Recall the sum of an arithmetic series of consecutive numbers $1,2, cdots, n$:
$$1+2+cdots+n=frac{n(n+1)}{2}$$
Take reciprocal of it and deal with partial fraction, the terms will be eliminated.
$$
frac{2}{n(n+1)}=2(frac{1}{n}-frac{1}{n+1})$$
After that, take the limit.
answered 4 hours ago
weilam06weilam06
14511
14511
add a comment |
add a comment |
$begingroup$
Hint: Use the fact that $$1+2+...+n=frac{n(n+1)}{2}$$
The series then becomes $$2sumlimits_{n=1}^infty left(frac{1}{n} - frac{1}{n+1} right)$$ which is a telescoping series.
$endgroup$
add a comment |
$begingroup$
Hint: Use the fact that $$1+2+...+n=frac{n(n+1)}{2}$$
The series then becomes $$2sumlimits_{n=1}^infty left(frac{1}{n} - frac{1}{n+1} right)$$ which is a telescoping series.
$endgroup$
add a comment |
$begingroup$
Hint: Use the fact that $$1+2+...+n=frac{n(n+1)}{2}$$
The series then becomes $$2sumlimits_{n=1}^infty left(frac{1}{n} - frac{1}{n+1} right)$$ which is a telescoping series.
$endgroup$
Hint: Use the fact that $$1+2+...+n=frac{n(n+1)}{2}$$
The series then becomes $$2sumlimits_{n=1}^infty left(frac{1}{n} - frac{1}{n+1} right)$$ which is a telescoping series.
answered 4 hours ago
Haris GusicHaris Gusic
17910
17910
add a comment |
add a comment |
$begingroup$
As $1+2+ldots +n = frac{n}{2}(n+1)$ you are looking for the sum of the series
$S = sum_{n=1}^{infty} frac{1}{frac{k}{2}(k+1)} = 2 sum_{k=1}^{infty} frac{1}{k(k+1)}$.
Nos separating you get that $S_n = 2sum_{k=1}^{n} frac{1}{k} - frac{1}{k+1} = 2(1 - frac{1}{n+1})$. Now taking limit when $n rightarrow infty$ you get that $S=2$
$endgroup$
add a comment |
$begingroup$
As $1+2+ldots +n = frac{n}{2}(n+1)$ you are looking for the sum of the series
$S = sum_{n=1}^{infty} frac{1}{frac{k}{2}(k+1)} = 2 sum_{k=1}^{infty} frac{1}{k(k+1)}$.
Nos separating you get that $S_n = 2sum_{k=1}^{n} frac{1}{k} - frac{1}{k+1} = 2(1 - frac{1}{n+1})$. Now taking limit when $n rightarrow infty$ you get that $S=2$
$endgroup$
add a comment |
$begingroup$
As $1+2+ldots +n = frac{n}{2}(n+1)$ you are looking for the sum of the series
$S = sum_{n=1}^{infty} frac{1}{frac{k}{2}(k+1)} = 2 sum_{k=1}^{infty} frac{1}{k(k+1)}$.
Nos separating you get that $S_n = 2sum_{k=1}^{n} frac{1}{k} - frac{1}{k+1} = 2(1 - frac{1}{n+1})$. Now taking limit when $n rightarrow infty$ you get that $S=2$
$endgroup$
As $1+2+ldots +n = frac{n}{2}(n+1)$ you are looking for the sum of the series
$S = sum_{n=1}^{infty} frac{1}{frac{k}{2}(k+1)} = 2 sum_{k=1}^{infty} frac{1}{k(k+1)}$.
Nos separating you get that $S_n = 2sum_{k=1}^{n} frac{1}{k} - frac{1}{k+1} = 2(1 - frac{1}{n+1})$. Now taking limit when $n rightarrow infty$ you get that $S=2$
answered 4 hours ago
JoseSquareJoseSquare
56812
56812
add a comment |
add a comment |
$begingroup$
$small{a_2=(1+2)^{-1}, a_3= (1+2+3)^{-1},....}$
$small{a_k=(1+2+...k)^{-1} = 2(k(k+1))^{-1}=2(1/k -1/(k+1))}$
Telescopic sum
$1+sum_{k=2}^{infty} a_k =?$
$endgroup$
add a comment |
$begingroup$
$small{a_2=(1+2)^{-1}, a_3= (1+2+3)^{-1},....}$
$small{a_k=(1+2+...k)^{-1} = 2(k(k+1))^{-1}=2(1/k -1/(k+1))}$
Telescopic sum
$1+sum_{k=2}^{infty} a_k =?$
$endgroup$
add a comment |
$begingroup$
$small{a_2=(1+2)^{-1}, a_3= (1+2+3)^{-1},....}$
$small{a_k=(1+2+...k)^{-1} = 2(k(k+1))^{-1}=2(1/k -1/(k+1))}$
Telescopic sum
$1+sum_{k=2}^{infty} a_k =?$
$endgroup$
$small{a_2=(1+2)^{-1}, a_3= (1+2+3)^{-1},....}$
$small{a_k=(1+2+...k)^{-1} = 2(k(k+1))^{-1}=2(1/k -1/(k+1))}$
Telescopic sum
$1+sum_{k=2}^{infty} a_k =?$
edited 2 hours ago
answered 4 hours ago
Peter SzilasPeter Szilas
11.3k2822
11.3k2822
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3116293%2ffinding-limit-of-a-laurent-series%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown