find value of trig integral












4












$begingroup$



Finding
$$int^{pi/2}_0 frac{sin^{n-2}(x)}{(1+cos x)^n}dx$$




what i try



$$
begin{split}
I &= int^{pi/2}_0 left(frac{sin x}{1+cos x}right)^ncsc^2(x)dx \
&= int^{pi/2}_0 tan^n(x/2)csc^2(x)dx
end{split}
$$



But I don't know how to proceed further. Could you please help?










share|cite|improve this question











$endgroup$

















    4












    $begingroup$



    Finding
    $$int^{pi/2}_0 frac{sin^{n-2}(x)}{(1+cos x)^n}dx$$




    what i try



    $$
    begin{split}
    I &= int^{pi/2}_0 left(frac{sin x}{1+cos x}right)^ncsc^2(x)dx \
    &= int^{pi/2}_0 tan^n(x/2)csc^2(x)dx
    end{split}
    $$



    But I don't know how to proceed further. Could you please help?










    share|cite|improve this question











    $endgroup$















      4












      4








      4





      $begingroup$



      Finding
      $$int^{pi/2}_0 frac{sin^{n-2}(x)}{(1+cos x)^n}dx$$




      what i try



      $$
      begin{split}
      I &= int^{pi/2}_0 left(frac{sin x}{1+cos x}right)^ncsc^2(x)dx \
      &= int^{pi/2}_0 tan^n(x/2)csc^2(x)dx
      end{split}
      $$



      But I don't know how to proceed further. Could you please help?










      share|cite|improve this question











      $endgroup$





      Finding
      $$int^{pi/2}_0 frac{sin^{n-2}(x)}{(1+cos x)^n}dx$$




      what i try



      $$
      begin{split}
      I &= int^{pi/2}_0 left(frac{sin x}{1+cos x}right)^ncsc^2(x)dx \
      &= int^{pi/2}_0 tan^n(x/2)csc^2(x)dx
      end{split}
      $$



      But I don't know how to proceed further. Could you please help?







      definite-integrals trigonometric-integrals






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited 5 hours ago









      gt6989b

      34k22455




      34k22455










      asked 5 hours ago









      jackyjacky

      709512




      709512






















          2 Answers
          2






          active

          oldest

          votes


















          7












          $begingroup$

          Note that the $csc^2(x)$ term can be expressed in terms of $tanleft(frac x2right)$ aswell. To be precise we got that



          begin{align*}
          csc^2(x)=left(frac1{sin(x)}right)^2=left(frac1{2sinleft(frac x2right)cosleft(frac x2right)}right)^2=left(frac{frac1{cos^2left(frac x2right)}}{2frac{sinleft(frac x2right)}{cosleft(frac x2right)}}right)^2
          =left(frac{1+tan^2left(frac x2right)}{2tanleft(frac x2right)}right)^2
          end{align*}



          Using this and further noticing that $frac{mathrm d}{mathrm dx}tanleft(frac x2right)=frac12left(1+tan^2left(frac x2right)right)$ we may enforce the substition $tanleft(frac x2right)=u$ to obtain



          begin{align*}
          I_n=int_0^{pi/2}tan^nleft(frac x2right)csc^2(x)mathrm dx&=int_0^{pi/2}tan^nleft(frac x2right)left(frac{1+tan^2left(frac x2right)}{2tanleft(frac x2right)}right)^2mathrm dx\
          &=frac12int_0^{pi/2}tan^{n-2}left(frac x2right)left(1+tan^2left(frac x2right)right)left[frac12left(1+tan^2left(frac x2right)right)mathrm dxright]\
          &=frac12int_0^1 u^{n-2}(1+u^2)mathrm du\
          &=frac12left[frac{u^{n-1}}{n-1}+frac{u^{n+1}}{n+1}right]_0^1\
          &=frac12left[frac1{n-1}+frac1{n+1}right]
          end{align*}




          $$therefore~I_n~=~int_0^{pi/2}tan^nleft(frac x2right)csc^2(x)mathrm dx~=~frac n{n^2-1}$$







          share|cite|improve this answer









          $endgroup$





















            5












            $begingroup$

            Slightly different approach, same answer.



            Let $u=tan(x/2)$, then
            $$
            begin{align}
            int_0^{pi/2}frac{sin^{n-2}(x)}{(1+cos(x))^n},mathrm{d}x
            &=int_0^{pi/2}tan^n(x/2)csc^2(x),mathrm{d}x\
            &=-int_0^{pi/2}tan^n(x/2),mathrm{d}cot(x)\
            &=-int_0^1u^n,mathrm{d}frac{1-u^2}{2u}\
            &=frac12int_0^1left(u^{n-2}+u^nright)mathrm{d}u\[3pt]
            &=frac12left(frac1{n-1}+frac1{n+1}right)\[6pt]
            &=frac{n}{n^2-1}
            end{align}
            $$






            share|cite|improve this answer









            $endgroup$













              Your Answer





              StackExchange.ifUsing("editor", function () {
              return StackExchange.using("mathjaxEditing", function () {
              StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
              StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
              });
              });
              }, "mathjax-editing");

              StackExchange.ready(function() {
              var channelOptions = {
              tags: "".split(" "),
              id: "69"
              };
              initTagRenderer("".split(" "), "".split(" "), channelOptions);

              StackExchange.using("externalEditor", function() {
              // Have to fire editor after snippets, if snippets enabled
              if (StackExchange.settings.snippets.snippetsEnabled) {
              StackExchange.using("snippets", function() {
              createEditor();
              });
              }
              else {
              createEditor();
              }
              });

              function createEditor() {
              StackExchange.prepareEditor({
              heartbeatType: 'answer',
              autoActivateHeartbeat: false,
              convertImagesToLinks: true,
              noModals: true,
              showLowRepImageUploadWarning: true,
              reputationToPostImages: 10,
              bindNavPrevention: true,
              postfix: "",
              imageUploader: {
              brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
              contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
              allowUrls: true
              },
              noCode: true, onDemand: true,
              discardSelector: ".discard-answer"
              ,immediatelyShowMarkdownHelp:true
              });


              }
              });














              draft saved

              draft discarded


















              StackExchange.ready(
              function () {
              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3107807%2ffind-value-of-trig-integral%23new-answer', 'question_page');
              }
              );

              Post as a guest















              Required, but never shown

























              2 Answers
              2






              active

              oldest

              votes








              2 Answers
              2






              active

              oldest

              votes









              active

              oldest

              votes






              active

              oldest

              votes









              7












              $begingroup$

              Note that the $csc^2(x)$ term can be expressed in terms of $tanleft(frac x2right)$ aswell. To be precise we got that



              begin{align*}
              csc^2(x)=left(frac1{sin(x)}right)^2=left(frac1{2sinleft(frac x2right)cosleft(frac x2right)}right)^2=left(frac{frac1{cos^2left(frac x2right)}}{2frac{sinleft(frac x2right)}{cosleft(frac x2right)}}right)^2
              =left(frac{1+tan^2left(frac x2right)}{2tanleft(frac x2right)}right)^2
              end{align*}



              Using this and further noticing that $frac{mathrm d}{mathrm dx}tanleft(frac x2right)=frac12left(1+tan^2left(frac x2right)right)$ we may enforce the substition $tanleft(frac x2right)=u$ to obtain



              begin{align*}
              I_n=int_0^{pi/2}tan^nleft(frac x2right)csc^2(x)mathrm dx&=int_0^{pi/2}tan^nleft(frac x2right)left(frac{1+tan^2left(frac x2right)}{2tanleft(frac x2right)}right)^2mathrm dx\
              &=frac12int_0^{pi/2}tan^{n-2}left(frac x2right)left(1+tan^2left(frac x2right)right)left[frac12left(1+tan^2left(frac x2right)right)mathrm dxright]\
              &=frac12int_0^1 u^{n-2}(1+u^2)mathrm du\
              &=frac12left[frac{u^{n-1}}{n-1}+frac{u^{n+1}}{n+1}right]_0^1\
              &=frac12left[frac1{n-1}+frac1{n+1}right]
              end{align*}




              $$therefore~I_n~=~int_0^{pi/2}tan^nleft(frac x2right)csc^2(x)mathrm dx~=~frac n{n^2-1}$$







              share|cite|improve this answer









              $endgroup$


















                7












                $begingroup$

                Note that the $csc^2(x)$ term can be expressed in terms of $tanleft(frac x2right)$ aswell. To be precise we got that



                begin{align*}
                csc^2(x)=left(frac1{sin(x)}right)^2=left(frac1{2sinleft(frac x2right)cosleft(frac x2right)}right)^2=left(frac{frac1{cos^2left(frac x2right)}}{2frac{sinleft(frac x2right)}{cosleft(frac x2right)}}right)^2
                =left(frac{1+tan^2left(frac x2right)}{2tanleft(frac x2right)}right)^2
                end{align*}



                Using this and further noticing that $frac{mathrm d}{mathrm dx}tanleft(frac x2right)=frac12left(1+tan^2left(frac x2right)right)$ we may enforce the substition $tanleft(frac x2right)=u$ to obtain



                begin{align*}
                I_n=int_0^{pi/2}tan^nleft(frac x2right)csc^2(x)mathrm dx&=int_0^{pi/2}tan^nleft(frac x2right)left(frac{1+tan^2left(frac x2right)}{2tanleft(frac x2right)}right)^2mathrm dx\
                &=frac12int_0^{pi/2}tan^{n-2}left(frac x2right)left(1+tan^2left(frac x2right)right)left[frac12left(1+tan^2left(frac x2right)right)mathrm dxright]\
                &=frac12int_0^1 u^{n-2}(1+u^2)mathrm du\
                &=frac12left[frac{u^{n-1}}{n-1}+frac{u^{n+1}}{n+1}right]_0^1\
                &=frac12left[frac1{n-1}+frac1{n+1}right]
                end{align*}




                $$therefore~I_n~=~int_0^{pi/2}tan^nleft(frac x2right)csc^2(x)mathrm dx~=~frac n{n^2-1}$$







                share|cite|improve this answer









                $endgroup$
















                  7












                  7








                  7





                  $begingroup$

                  Note that the $csc^2(x)$ term can be expressed in terms of $tanleft(frac x2right)$ aswell. To be precise we got that



                  begin{align*}
                  csc^2(x)=left(frac1{sin(x)}right)^2=left(frac1{2sinleft(frac x2right)cosleft(frac x2right)}right)^2=left(frac{frac1{cos^2left(frac x2right)}}{2frac{sinleft(frac x2right)}{cosleft(frac x2right)}}right)^2
                  =left(frac{1+tan^2left(frac x2right)}{2tanleft(frac x2right)}right)^2
                  end{align*}



                  Using this and further noticing that $frac{mathrm d}{mathrm dx}tanleft(frac x2right)=frac12left(1+tan^2left(frac x2right)right)$ we may enforce the substition $tanleft(frac x2right)=u$ to obtain



                  begin{align*}
                  I_n=int_0^{pi/2}tan^nleft(frac x2right)csc^2(x)mathrm dx&=int_0^{pi/2}tan^nleft(frac x2right)left(frac{1+tan^2left(frac x2right)}{2tanleft(frac x2right)}right)^2mathrm dx\
                  &=frac12int_0^{pi/2}tan^{n-2}left(frac x2right)left(1+tan^2left(frac x2right)right)left[frac12left(1+tan^2left(frac x2right)right)mathrm dxright]\
                  &=frac12int_0^1 u^{n-2}(1+u^2)mathrm du\
                  &=frac12left[frac{u^{n-1}}{n-1}+frac{u^{n+1}}{n+1}right]_0^1\
                  &=frac12left[frac1{n-1}+frac1{n+1}right]
                  end{align*}




                  $$therefore~I_n~=~int_0^{pi/2}tan^nleft(frac x2right)csc^2(x)mathrm dx~=~frac n{n^2-1}$$







                  share|cite|improve this answer









                  $endgroup$



                  Note that the $csc^2(x)$ term can be expressed in terms of $tanleft(frac x2right)$ aswell. To be precise we got that



                  begin{align*}
                  csc^2(x)=left(frac1{sin(x)}right)^2=left(frac1{2sinleft(frac x2right)cosleft(frac x2right)}right)^2=left(frac{frac1{cos^2left(frac x2right)}}{2frac{sinleft(frac x2right)}{cosleft(frac x2right)}}right)^2
                  =left(frac{1+tan^2left(frac x2right)}{2tanleft(frac x2right)}right)^2
                  end{align*}



                  Using this and further noticing that $frac{mathrm d}{mathrm dx}tanleft(frac x2right)=frac12left(1+tan^2left(frac x2right)right)$ we may enforce the substition $tanleft(frac x2right)=u$ to obtain



                  begin{align*}
                  I_n=int_0^{pi/2}tan^nleft(frac x2right)csc^2(x)mathrm dx&=int_0^{pi/2}tan^nleft(frac x2right)left(frac{1+tan^2left(frac x2right)}{2tanleft(frac x2right)}right)^2mathrm dx\
                  &=frac12int_0^{pi/2}tan^{n-2}left(frac x2right)left(1+tan^2left(frac x2right)right)left[frac12left(1+tan^2left(frac x2right)right)mathrm dxright]\
                  &=frac12int_0^1 u^{n-2}(1+u^2)mathrm du\
                  &=frac12left[frac{u^{n-1}}{n-1}+frac{u^{n+1}}{n+1}right]_0^1\
                  &=frac12left[frac1{n-1}+frac1{n+1}right]
                  end{align*}




                  $$therefore~I_n~=~int_0^{pi/2}tan^nleft(frac x2right)csc^2(x)mathrm dx~=~frac n{n^2-1}$$








                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered 5 hours ago









                  mrtaurhomrtaurho

                  4,85641235




                  4,85641235























                      5












                      $begingroup$

                      Slightly different approach, same answer.



                      Let $u=tan(x/2)$, then
                      $$
                      begin{align}
                      int_0^{pi/2}frac{sin^{n-2}(x)}{(1+cos(x))^n},mathrm{d}x
                      &=int_0^{pi/2}tan^n(x/2)csc^2(x),mathrm{d}x\
                      &=-int_0^{pi/2}tan^n(x/2),mathrm{d}cot(x)\
                      &=-int_0^1u^n,mathrm{d}frac{1-u^2}{2u}\
                      &=frac12int_0^1left(u^{n-2}+u^nright)mathrm{d}u\[3pt]
                      &=frac12left(frac1{n-1}+frac1{n+1}right)\[6pt]
                      &=frac{n}{n^2-1}
                      end{align}
                      $$






                      share|cite|improve this answer









                      $endgroup$


















                        5












                        $begingroup$

                        Slightly different approach, same answer.



                        Let $u=tan(x/2)$, then
                        $$
                        begin{align}
                        int_0^{pi/2}frac{sin^{n-2}(x)}{(1+cos(x))^n},mathrm{d}x
                        &=int_0^{pi/2}tan^n(x/2)csc^2(x),mathrm{d}x\
                        &=-int_0^{pi/2}tan^n(x/2),mathrm{d}cot(x)\
                        &=-int_0^1u^n,mathrm{d}frac{1-u^2}{2u}\
                        &=frac12int_0^1left(u^{n-2}+u^nright)mathrm{d}u\[3pt]
                        &=frac12left(frac1{n-1}+frac1{n+1}right)\[6pt]
                        &=frac{n}{n^2-1}
                        end{align}
                        $$






                        share|cite|improve this answer









                        $endgroup$
















                          5












                          5








                          5





                          $begingroup$

                          Slightly different approach, same answer.



                          Let $u=tan(x/2)$, then
                          $$
                          begin{align}
                          int_0^{pi/2}frac{sin^{n-2}(x)}{(1+cos(x))^n},mathrm{d}x
                          &=int_0^{pi/2}tan^n(x/2)csc^2(x),mathrm{d}x\
                          &=-int_0^{pi/2}tan^n(x/2),mathrm{d}cot(x)\
                          &=-int_0^1u^n,mathrm{d}frac{1-u^2}{2u}\
                          &=frac12int_0^1left(u^{n-2}+u^nright)mathrm{d}u\[3pt]
                          &=frac12left(frac1{n-1}+frac1{n+1}right)\[6pt]
                          &=frac{n}{n^2-1}
                          end{align}
                          $$






                          share|cite|improve this answer









                          $endgroup$



                          Slightly different approach, same answer.



                          Let $u=tan(x/2)$, then
                          $$
                          begin{align}
                          int_0^{pi/2}frac{sin^{n-2}(x)}{(1+cos(x))^n},mathrm{d}x
                          &=int_0^{pi/2}tan^n(x/2)csc^2(x),mathrm{d}x\
                          &=-int_0^{pi/2}tan^n(x/2),mathrm{d}cot(x)\
                          &=-int_0^1u^n,mathrm{d}frac{1-u^2}{2u}\
                          &=frac12int_0^1left(u^{n-2}+u^nright)mathrm{d}u\[3pt]
                          &=frac12left(frac1{n-1}+frac1{n+1}right)\[6pt]
                          &=frac{n}{n^2-1}
                          end{align}
                          $$







                          share|cite|improve this answer












                          share|cite|improve this answer



                          share|cite|improve this answer










                          answered 4 hours ago









                          robjohnrobjohn

                          267k27308632




                          267k27308632






























                              draft saved

                              draft discarded




















































                              Thanks for contributing an answer to Mathematics Stack Exchange!


                              • Please be sure to answer the question. Provide details and share your research!

                              But avoid



                              • Asking for help, clarification, or responding to other answers.

                              • Making statements based on opinion; back them up with references or personal experience.


                              Use MathJax to format equations. MathJax reference.


                              To learn more, see our tips on writing great answers.




                              draft saved


                              draft discarded














                              StackExchange.ready(
                              function () {
                              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3107807%2ffind-value-of-trig-integral%23new-answer', 'question_page');
                              }
                              );

                              Post as a guest















                              Required, but never shown





















































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown

































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown







                              Popular posts from this blog

                              How to label and detect the document text images

                              Vallis Paradisi

                              Tabula Rosettana