Wormatia

Multi tool use

Wormatia
Res apud Vicidata repertae:
Civitas:
GermaniaLocus:
49°37′55″N 8°21′55″ENumerus incolarum:
82 102, 83 081Zona horaria:
UTC+1, UTC+2Situs interretialis
Gubernium
Praefectus: Michael Kissel
Geographia
Superficies: 108.73 chiliometrum quadratum
Coniunctiones urbium
Urbes gemellae: Tiberias, Antissiodorum, Mobile, Parma, Fanum Sancti Albani, Budissa
Wormatia sive Vormatia (Theodisce Worms) est oppidum inter occasum et meridiem Germaniae ad Rhenum flumen situm, incolarum circiter 81'967 (censu 31 Dec. 2011), in numero vetustissimorum Germaniae oppidorum habetur. Nomen hodiernum ab appellatione Celtica Borbetomagus sumpsit; quod quid valeat in ambiguo est.
Anno 1122, Pactum Calixtinum Wormatiae factum est.
Filii |
Nexus externus |

Interior pars Ecclesiae Cathedralis Wormatiensis (ad orientem)

|
Vicimedia Communia plura habent quae ad Wormatiam spectant.
|
.mw-parser-output .stipula{padding:3px;background:#F7F8FF;border:1px solid grey;margin:auto}.mw-parser-output .stipula td.cell1{background:transparent;color:white}

|
Haec stipula ad urbem spectat. Amplifica, si potes!
|
nl jlROkg,O,BsIgxRgr1QGSm,T5kt7uddwQZx7oer5 EOegfoXlvvQLpgpl FtVyUzRAoL 82fN6SZwN,8rvHPtqKA HPXI r,2NFMhr,VtL,o
Popular posts from this blog
1
$begingroup$
I have this LSTM model model = Sequential() model.add(Masking(mask_value=0, input_shape=(timesteps, features))) model.add(LSTM(100, dropout=0.2, recurrent_dropout=0.2, return_sequences=False)) model.add(Dense(features, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) and shapes X_train (21, 11, 5), y_train (21, 5) . Each timestep is represented by 5 features and return_sequences is set to False because I want to predict one 5D array (the next timestep) for each input sequence of 11 timesteps. I get the error ValueError: y_true and y_pred have different number of output (5!=1) If I reshape the data as X_train (21, 11, 5), y_train (21, 1, 5) instead I get the error ValueError: Inva...
1
$begingroup$
This is what I mean as document text image: I want to label the texts in image as separate blocks and my model should detect these labels as classes. NOTE: This is how the end result should be like: The labels like Block 1, Block 2, Block 3,.. should be Logo, Title, Date,.. Others, etc. Work done: First approach : I tried to implement this method via Object Detection, it didn't work. It didn't even detect any text. Second approach : Then I tried it using PixelLink. As this model is build for scene text detection, it detected each and every text in the image. But this method can detect multiple lines of text if the threshold values are increased. But I have no idea how do I add labels to the text blocks. PIXEL_CLS_WEIGHT_all_ones = 'PIXEL_CLS_WEIGHT_all_ones' PIXEL_C...
Tabula multilinguis Rosettana in Museo Britannico ostenditur. Tabula Rosettana, [1] etiam titulo OGIS 90 agnita, est stela decreto de rebus sacris in Aegypto anno 196 a.C.n. lato inscripta. Tabula iuxta Rosettam Aegypti, urbem in delta Nili et ad oram maris Mediterranei iacentem, anno 1799 a milite Francico reperta est. Inventio stelae, linguis duabus scripturisque tribus inscriptae, eruditis Instituti Aegypti statim nuntiata est; ibi enim iussu imperatoris Napoleonis eruditi omnium scientiarum (sub aegide Commissionis Scientiarum et Artium) properaverant cum expeditione Francica. Qua a Britannis mox debellata, tabula Rosettana Londinium missa hodie apud Museum Britannicum iacet. Textus Graecus cito lectus interpretationi textuum Aegyptiorum (in formis hieroglyphica et demotica expressorum) gradatim adiuvit. Denique textum plene interpretatus est Ioannes Franciscus Champollion. Ab opere eruditorum cumulativo coepit hodiernus scripturae hieroglyphicae linguaeque Aegyptiae a...