156 a.C.n.

Multi tool use
Annus 156 a.C.n. e serie paginarum brevium de annis.
Millennia:
|
millennium 2 a.C.n. · millennium 1 a.C.n. · millennium 1
|
Saecula:
|
saeculum 3 a.C.n. · saeculum 2 a.C.n. · saeculum 1 a.C.n.
|
Anni:
|
(161 a.C.n.) · 160 a.C.n. · 159 a.C.n. · 158 a.C.n. · 157 a.C.n. · 156 a.C.n. · 155 a.C.n. · 154 a.C.n. · 153 a.C.n. · 152 a.C.n. · 151 a.C.n. · (150 a.C.n.)
|
Eventa |
Eventa huius temporis desiderata (additis eventibus, hanc formulam remove)
Nati |
Nati huius temporis desiderati (additis natis, hanc formulam remove, vide etiam unam fere paginam in categoria Categoria:Nati 156 a.C.n.)
Mortui |
Mortui huius temporis desiderati (additis mortuis, hanc formulam remove)
fSXY23O18zRSEaX17xGvNOgBd7vTsDjBZbOzmTCoTTBLil4,Mbvb,eT3gR6 zl tvXMm 2QK3YjYiW mQ,J81gQGZ,Irn
Popular posts from this blog
Chemia Organometallica , disciplina quae partes chemiae organicae inorganicaeque complectitur; moleculas noscit quae vincula covalentes inter carbonium et metallum aut semimetallum continent. Index 1 Exempla 2 Proprietas chemicarum organometallicarum 3 Ramae chemiae organometallicae 4 Fons Exempla | Vitaminum B12 in corpore humano est chemica organometallica, sed non omnes moleculae metallum habentes sunt organometallicae, solum eae in quo vinculum inter carbonium et metallum est covalentum. Ergo, quamquam natriumacetatum (H 3 C-COONa, sal natrii acoris aceti) partem metallicum et partem organicam CH 3 habet, molecula ipsa non est metallorganica, quia vinculum natrii est ionicum et non est inter natrium et carbonium. Similiter chlorophyll et haemoglobinum non sunt chemicae metallorganicae. Etiam hodie, chemica Grignardi qui magnesium continent sunt potior pro synthesis moleculae organicae. Pro harum chemicarum inventa Victori Grignard Donatium No...
1
$begingroup$
I have this LSTM model model = Sequential() model.add(Masking(mask_value=0, input_shape=(timesteps, features))) model.add(LSTM(100, dropout=0.2, recurrent_dropout=0.2, return_sequences=False)) model.add(Dense(features, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) and shapes X_train (21, 11, 5), y_train (21, 5) . Each timestep is represented by 5 features and return_sequences is set to False because I want to predict one 5D array (the next timestep) for each input sequence of 11 timesteps. I get the error ValueError: y_true and y_pred have different number of output (5!=1) If I reshape the data as X_train (21, 11, 5), y_train (21, 1, 5) instead I get the error ValueError: Inva...
1
$begingroup$
This is what I mean as document text image: I want to label the texts in image as separate blocks and my model should detect these labels as classes. NOTE: This is how the end result should be like: The labels like Block 1, Block 2, Block 3,.. should be Logo, Title, Date,.. Others, etc. Work done: First approach : I tried to implement this method via Object Detection, it didn't work. It didn't even detect any text. Second approach : Then I tried it using PixelLink. As this model is build for scene text detection, it detected each and every text in the image. But this method can detect multiple lines of text if the threshold values are increased. But I have no idea how do I add labels to the text blocks. PIXEL_CLS_WEIGHT_all_ones = 'PIXEL_CLS_WEIGHT_all_ones' PIXEL_C...