-2 Latinitas huius rei dubia est. Corrige si potes. Vide {{latinitas}}.
Universitas Cornelliana
Res apud Vicidata repertae:
studium privatum, studium mercede terrestri sustentum, sun grant institution, universitas inquisitoria, non lucrativa Civitas: Civitates Foederatae Americae Locus: 42°26′50″N 76°28′59″W Situs: Ithaca
Rectio
Nomen officiale: Cornell University; Situs interretialis Praetorium: Ithaca;
Origo
Conditor: Ezra Cornell, Andrew Dickson White Inceptio: 1865
Tabula aut despectus
Turris McGrawiana in campo universitario.
Universitas Cornelliana[1] (Anglice Cornell University) est universitas privata Ithacae in civitate Novo Eboraco Civitatum Foederatarum sita.
Index
1Collegia et scholae
2Loci sancti
3Artes athleticae
4Nexus interni
5Notae
Collegia et scholae |
Universitati sunt multa collegia et scholae: [2]
Collegium Agriculturae Scientiaeque Biologicae Novi Eboraci*
Collegium Architecturae Explicationis Artiumque
Collegium Artium Scientiaeque
Collegium Oecologiae Humanae Novi Eboraci*
Collegium Ingeniariorum Novi Eboraci*
Schola Administrationis Deversorialis
Schola Graduati
Schola Johnson Procurationis
Schola Negotiationis Industriaeque Novi Eboraci*
Schola Legum Iurisprudentiaeque
Schola Veterinaria Novi Eboraci*
Schola Weill Medica (Novum Eboracum Urbs)
Schola Weill Medica (Qatar)
Loci sancti |
Templum Zenos
Capella Sage
Aula Annabel Taylor
Artes athleticae |
Universitas est socius Foederis Hederani.
Nexus interni
Professores Universitatis Cornellianae
Notae |
↑"Universitas Cornelliana": vide epistulam
↑ Scholae collegiaque denotata * sunt sub foedere, quo Novum Eboracum pecunias universitate dat ut universitas matriculae pretrium Novi Eboraci civum imminuat.
Chemia Organometallica , disciplina quae partes chemiae organicae inorganicaeque complectitur; moleculas noscit quae vincula covalentes inter carbonium et metallum aut semimetallum continent. Index 1 Exempla 2 Proprietas chemicarum organometallicarum 3 Ramae chemiae organometallicae 4 Fons Exempla | Vitaminum B12 in corpore humano est chemica organometallica, sed non omnes moleculae metallum habentes sunt organometallicae, solum eae in quo vinculum inter carbonium et metallum est covalentum. Ergo, quamquam natriumacetatum (H 3 C-COONa, sal natrii acoris aceti) partem metallicum et partem organicam CH 3 habet, molecula ipsa non est metallorganica, quia vinculum natrii est ionicum et non est inter natrium et carbonium. Similiter chlorophyll et haemoglobinum non sunt chemicae metallorganicae. Etiam hodie, chemica Grignardi qui magnesium continent sunt potior pro synthesis moleculae organicae. Pro harum chemicarum inventa Victori Grignard Donatium No...
1
$begingroup$
I have this LSTM model model = Sequential() model.add(Masking(mask_value=0, input_shape=(timesteps, features))) model.add(LSTM(100, dropout=0.2, recurrent_dropout=0.2, return_sequences=False)) model.add(Dense(features, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) and shapes X_train (21, 11, 5), y_train (21, 5) . Each timestep is represented by 5 features and return_sequences is set to False because I want to predict one 5D array (the next timestep) for each input sequence of 11 timesteps. I get the error ValueError: y_true and y_pred have different number of output (5!=1) If I reshape the data as X_train (21, 11, 5), y_train (21, 1, 5) instead I get the error ValueError: Inva...
1
$begingroup$
This is what I mean as document text image: I want to label the texts in image as separate blocks and my model should detect these labels as classes. NOTE: This is how the end result should be like: The labels like Block 1, Block 2, Block 3,.. should be Logo, Title, Date,.. Others, etc. Work done: First approach : I tried to implement this method via Object Detection, it didn't work. It didn't even detect any text. Second approach : Then I tried it using PixelLink. As this model is build for scene text detection, it detected each and every text in the image. But this method can detect multiple lines of text if the threshold values are increased. But I have no idea how do I add labels to the text blocks. PIXEL_CLS_WEIGHT_all_ones = 'PIXEL_CLS_WEIGHT_all_ones' PIXEL_C...