R, caret: does caret automatically create dummy variable for random Forest?
$begingroup$
I created a two class data set, dat
. This data set only contains 25 variables. 24 are numeric and 1 is categorical (with 26 levels). The result of the auto-tuned model gives a mtry
of 2, 14, 26, 38 and 50. So is this true that the caret created the dummy variable for the categorical variable? What other models does caret create dummy variable automatically?
Please see following example code.
pacman::p_load(R.utils, caret, doParallel)
cl <- makeCluster(8, outfile="")
registerDoParallel(cl)
set.seed(2)
dat <- twoClassSim(48842, noiseVars = 10)# 25 variables.
dat = cbind(dat,data.frame(categorical = sample(LETTERS,nrow(dat),replace = T)))
fit_on <- list(rs1 = 1:1300)
pred_on <- list(rs1 = 1330:10000)
indexFinal = 1:1000
fitControl <- trainControl(method = "cv",number=1,repeats=1,
classProbs = TRUE,summaryFunction = twoClassSummary,
index= fit_on, indexOut = pred_on,
indexFinal = indexFinal,
verboseIter = TRUE,
savePredictions = TRUE
)
model = train(Class ~ ., data = dat,
method = "rf",
preProcess=c("center","scale"),
trControl = fitControl,
tuneLength = 5)
model
# mtry ROC Sens Spec
# 2 0.9166711 0.9298806 0.6778085
# 14 0.9237881 0.8851236 0.7645137
# 26 0.9177710 0.8746803 0.7770797
# 38 0.9132661 0.8689258 0.7753204
# 50 0.9093577 0.8687127 0.7728072
# there are only 25 variables.
stopCluster(cl)
machine-learning r
$endgroup$
add a comment |
$begingroup$
I created a two class data set, dat
. This data set only contains 25 variables. 24 are numeric and 1 is categorical (with 26 levels). The result of the auto-tuned model gives a mtry
of 2, 14, 26, 38 and 50. So is this true that the caret created the dummy variable for the categorical variable? What other models does caret create dummy variable automatically?
Please see following example code.
pacman::p_load(R.utils, caret, doParallel)
cl <- makeCluster(8, outfile="")
registerDoParallel(cl)
set.seed(2)
dat <- twoClassSim(48842, noiseVars = 10)# 25 variables.
dat = cbind(dat,data.frame(categorical = sample(LETTERS,nrow(dat),replace = T)))
fit_on <- list(rs1 = 1:1300)
pred_on <- list(rs1 = 1330:10000)
indexFinal = 1:1000
fitControl <- trainControl(method = "cv",number=1,repeats=1,
classProbs = TRUE,summaryFunction = twoClassSummary,
index= fit_on, indexOut = pred_on,
indexFinal = indexFinal,
verboseIter = TRUE,
savePredictions = TRUE
)
model = train(Class ~ ., data = dat,
method = "rf",
preProcess=c("center","scale"),
trControl = fitControl,
tuneLength = 5)
model
# mtry ROC Sens Spec
# 2 0.9166711 0.9298806 0.6778085
# 14 0.9237881 0.8851236 0.7645137
# 26 0.9177710 0.8746803 0.7770797
# 38 0.9132661 0.8689258 0.7753204
# 50 0.9093577 0.8687127 0.7728072
# there are only 25 variables.
stopCluster(cl)
machine-learning r
$endgroup$
add a comment |
$begingroup$
I created a two class data set, dat
. This data set only contains 25 variables. 24 are numeric and 1 is categorical (with 26 levels). The result of the auto-tuned model gives a mtry
of 2, 14, 26, 38 and 50. So is this true that the caret created the dummy variable for the categorical variable? What other models does caret create dummy variable automatically?
Please see following example code.
pacman::p_load(R.utils, caret, doParallel)
cl <- makeCluster(8, outfile="")
registerDoParallel(cl)
set.seed(2)
dat <- twoClassSim(48842, noiseVars = 10)# 25 variables.
dat = cbind(dat,data.frame(categorical = sample(LETTERS,nrow(dat),replace = T)))
fit_on <- list(rs1 = 1:1300)
pred_on <- list(rs1 = 1330:10000)
indexFinal = 1:1000
fitControl <- trainControl(method = "cv",number=1,repeats=1,
classProbs = TRUE,summaryFunction = twoClassSummary,
index= fit_on, indexOut = pred_on,
indexFinal = indexFinal,
verboseIter = TRUE,
savePredictions = TRUE
)
model = train(Class ~ ., data = dat,
method = "rf",
preProcess=c("center","scale"),
trControl = fitControl,
tuneLength = 5)
model
# mtry ROC Sens Spec
# 2 0.9166711 0.9298806 0.6778085
# 14 0.9237881 0.8851236 0.7645137
# 26 0.9177710 0.8746803 0.7770797
# 38 0.9132661 0.8689258 0.7753204
# 50 0.9093577 0.8687127 0.7728072
# there are only 25 variables.
stopCluster(cl)
machine-learning r
$endgroup$
I created a two class data set, dat
. This data set only contains 25 variables. 24 are numeric and 1 is categorical (with 26 levels). The result of the auto-tuned model gives a mtry
of 2, 14, 26, 38 and 50. So is this true that the caret created the dummy variable for the categorical variable? What other models does caret create dummy variable automatically?
Please see following example code.
pacman::p_load(R.utils, caret, doParallel)
cl <- makeCluster(8, outfile="")
registerDoParallel(cl)
set.seed(2)
dat <- twoClassSim(48842, noiseVars = 10)# 25 variables.
dat = cbind(dat,data.frame(categorical = sample(LETTERS,nrow(dat),replace = T)))
fit_on <- list(rs1 = 1:1300)
pred_on <- list(rs1 = 1330:10000)
indexFinal = 1:1000
fitControl <- trainControl(method = "cv",number=1,repeats=1,
classProbs = TRUE,summaryFunction = twoClassSummary,
index= fit_on, indexOut = pred_on,
indexFinal = indexFinal,
verboseIter = TRUE,
savePredictions = TRUE
)
model = train(Class ~ ., data = dat,
method = "rf",
preProcess=c("center","scale"),
trControl = fitControl,
tuneLength = 5)
model
# mtry ROC Sens Spec
# 2 0.9166711 0.9298806 0.6778085
# 14 0.9237881 0.8851236 0.7645137
# 26 0.9177710 0.8746803 0.7770797
# 38 0.9132661 0.8689258 0.7753204
# 50 0.9093577 0.8687127 0.7728072
# there are only 25 variables.
stopCluster(cl)
machine-learning r
machine-learning r
asked Mar 17 '17 at 23:42
WCMCWCMC
23326
23326
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Yes, it does for some models. You can inspect which variables are used via
model$coefnames.
New contributor
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "557"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f17679%2fr-caret-does-caret-automatically-create-dummy-variable-for-random-forest%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Yes, it does for some models. You can inspect which variables are used via
model$coefnames.
New contributor
$endgroup$
add a comment |
$begingroup$
Yes, it does for some models. You can inspect which variables are used via
model$coefnames.
New contributor
$endgroup$
add a comment |
$begingroup$
Yes, it does for some models. You can inspect which variables are used via
model$coefnames.
New contributor
$endgroup$
Yes, it does for some models. You can inspect which variables are used via
model$coefnames.
New contributor
New contributor
answered 12 mins ago
Marcus LauritsenMarcus Lauritsen
1
1
New contributor
New contributor
add a comment |
add a comment |
Thanks for contributing an answer to Data Science Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f17679%2fr-caret-does-caret-automatically-create-dummy-variable-for-random-forest%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown