Asse (commune generale)

Multi tool use
Insigne
|
Tabula geographica
|

|
|
Nomen Latinum: |
Asse commune generale
|
Nomen Germanicum: |
Samtgemeinde Asse
|
Nomina Latina alia: |
|
|
|
Situs communis generalis Asse in circulo Guelpherbytensi
|

|
|
|
Indicia fundamentalia
|
Terra foederalis: |
Saxonia Inferior
|
|
|
Provincia: |
|
Circulus rusticanus: |
Circulus Guelpherbytensis
|
Coordinata geographica: |
52° 06′ 39″ Sept., 10° 40′ 38″ Ort.
|
Altitudo: |
supra mare
|
Area: |
86,63 km²
|
Numerus incolarum: |
9.463 (31 Decembris 2011)
|
Coniunctio communium cum: |
|
Spissitudo incolarum: |
109 per chiliometrum quadratum
|
Numerus cursualis: |
|
Praefixum telephonicum: |
|
Nota autocineti: |
WF
|
Nota magistratus communalis: |
03 1 58 5401
|
UN/LOCODE: |
|
NUTS-Regio: |
|
|
|
Inscriptio cursualis magistratus: |
Im Winkel 4 38319 Remlingen
|
Pagina interretialis: |
www.samtgemeinde-asse.de
|
Res politicae
|
Magister civium : |
Regina Bollmeier (SPD)
|
|
|
|
|
|
|
Asse commune generale Saxoniae Inferioris in circulo Guelpherbytensi est.
Historia |
Anno 1974 commune generale Asse constitutum est, cum vici infra descripti coniuncti sunt[1]. Nomen a monte Asse in agro communi sito accepit. Die 1 Ianuarii 2015 Asse et Schöppenstedt communia generalia ad novum Elm-Asse commune generale coniuncta sunt.
Communia ad Asse pertinentes |
Denkte (3023 incolae)
Hedeper (540)
Kissenbrück (1770)
Remlingen (1813, sedes administrationis)
Roklum (460)
Semmenstedt (649)
Wittmar (1208)
Notae |
↑ Pagina interretialis Asse de communi condendo
.mw-parser-output .stipula{padding:3px;background:#F7F8FF;border:1px solid grey;margin:auto}.mw-parser-output .stipula td.cell1{background:transparent;color:white}

|
Haec stipula ad urbem spectat. Amplifica, si potes!
|
XkS1 toiW,c0,jMSrnfC,EXe4SimSnwCto o9HIjPKCGipLklREj 665sIDj6Nkp2gjyFTSG6tQIQlMnaR mRF3ZveX8C9CCqsv D
Popular posts from this blog
Tabula multilinguis Rosettana in Museo Britannico ostenditur. Tabula Rosettana, [1] etiam titulo OGIS 90 agnita, est stela decreto de rebus sacris in Aegypto anno 196 a.C.n. lato inscripta. Tabula iuxta Rosettam Aegypti, urbem in delta Nili et ad oram maris Mediterranei iacentem, anno 1799 a milite Francico reperta est. Inventio stelae, linguis duabus scripturisque tribus inscriptae, eruditis Instituti Aegypti statim nuntiata est; ibi enim iussu imperatoris Napoleonis eruditi omnium scientiarum (sub aegide Commissionis Scientiarum et Artium) properaverant cum expeditione Francica. Qua a Britannis mox debellata, tabula Rosettana Londinium missa hodie apud Museum Britannicum iacet. Textus Graecus cito lectus interpretationi textuum Aegyptiorum (in formis hieroglyphica et demotica expressorum) gradatim adiuvit. Denique textum plene interpretatus est Ioannes Franciscus Champollion. Ab opere eruditorum cumulativo coepit hodiernus scripturae hieroglyphicae linguaeque Aegyptiae a...
1
$begingroup$
This is what I mean as document text image: I want to label the texts in image as separate blocks and my model should detect these labels as classes. NOTE: This is how the end result should be like: The labels like Block 1, Block 2, Block 3,.. should be Logo, Title, Date,.. Others, etc. Work done: First approach : I tried to implement this method via Object Detection, it didn't work. It didn't even detect any text. Second approach : Then I tried it using PixelLink. As this model is build for scene text detection, it detected each and every text in the image. But this method can detect multiple lines of text if the threshold values are increased. But I have no idea how do I add labels to the text blocks. PIXEL_CLS_WEIGHT_all_ones = 'PIXEL_CLS_WEIGHT_all_ones' PIXEL_C...
1
$begingroup$
I have this LSTM model model = Sequential() model.add(Masking(mask_value=0, input_shape=(timesteps, features))) model.add(LSTM(100, dropout=0.2, recurrent_dropout=0.2, return_sequences=False)) model.add(Dense(features, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) and shapes X_train (21, 11, 5), y_train (21, 5) . Each timestep is represented by 5 features and return_sequences is set to False because I want to predict one 5D array (the next timestep) for each input sequence of 11 timesteps. I get the error ValueError: y_true and y_pred have different number of output (5!=1) If I reshape the data as X_train (21, 11, 5), y_train (21, 1, 5) instead I get the error ValueError: Inva...