Incursio magna

Multi tool use
Unam legis e paginis de
re militari
disserentibus
Typi bellorum
- Bellum civile
- Bellum stativum
- Bellum frigidum
- Ecechiria
- Incursio magna
Vires armatae
- Exercitus
- Classis
- Classis aeria
Ius
- Ius inter civitates et gentes
- Humanitarium belli ius
- Detrectator militiae
Vide etiam
Index bellorum · Arma · Pax · Dissimulatio · Glossarium · Diplomatia
Incursio magna militum est, si multi milites regni terram alterius regni invadunt, ut omnem vel magnam eius terrae partem diu vel ad aeternum occupent. Propter invadendi vocabulum hodiernis linguis vox neolatina invasionis in usu est.
Incursiones militum fuerunt exempli gratia
- incursio Romanorum in Galliam duce Caesare
- incursio Romanorum in terram Germanorum
- Incursio Gothorum in imperium Romanum
Medio aevo:
- Incursio Normannorum in Angliam
Expeditiones sacrae in terram sanctam, quae dicitur.
Hodiernis temporibus:
- Incursio Germanorum in Russiae terram altero bello mundano
- Incursio 6 Iunii 1944 foederatarum civitatum militum ex Anglia in Normanniam quae terra tum a Germanis occupata erat.
Incursiones fieri possunt
In fabulis phantasticis nonnumuquam animalia aliena sive extraterranea ex universitatis spatio terram planetam invadunt.
Hodie Charta Consociationis Nationum incursiones quae independentiam vel sui iuris civitatum vel territoriae violant.[1]
Pinacotheca |
Milites CFA Normanniam a Germanis occupatam invadunt.
Milites civitatum alligatarum Normanniam anno 1944 mari invaserunt.
Incursionis classis Danica in bello Scanio
Nota |
↑ Charta Consociationis Nationum, Pars I, Articlus II, sectio 4
Nexus interni
- Annexatio
- Colonialismus
- Belli scelus
u Jm JhaJ qBX2ngiLuieWludKqsX6nLNWSGP yKEUt7TIKkLZwQa,I8
Popular posts from this blog
Tabula multilinguis Rosettana in Museo Britannico ostenditur. Tabula Rosettana, [1] etiam titulo OGIS 90 agnita, est stela decreto de rebus sacris in Aegypto anno 196 a.C.n. lato inscripta. Tabula iuxta Rosettam Aegypti, urbem in delta Nili et ad oram maris Mediterranei iacentem, anno 1799 a milite Francico reperta est. Inventio stelae, linguis duabus scripturisque tribus inscriptae, eruditis Instituti Aegypti statim nuntiata est; ibi enim iussu imperatoris Napoleonis eruditi omnium scientiarum (sub aegide Commissionis Scientiarum et Artium) properaverant cum expeditione Francica. Qua a Britannis mox debellata, tabula Rosettana Londinium missa hodie apud Museum Britannicum iacet. Textus Graecus cito lectus interpretationi textuum Aegyptiorum (in formis hieroglyphica et demotica expressorum) gradatim adiuvit. Denique textum plene interpretatus est Ioannes Franciscus Champollion. Ab opere eruditorum cumulativo coepit hodiernus scripturae hieroglyphicae linguaeque Aegyptiae a...
1
$begingroup$
This is what I mean as document text image: I want to label the texts in image as separate blocks and my model should detect these labels as classes. NOTE: This is how the end result should be like: The labels like Block 1, Block 2, Block 3,.. should be Logo, Title, Date,.. Others, etc. Work done: First approach : I tried to implement this method via Object Detection, it didn't work. It didn't even detect any text. Second approach : Then I tried it using PixelLink. As this model is build for scene text detection, it detected each and every text in the image. But this method can detect multiple lines of text if the threshold values are increased. But I have no idea how do I add labels to the text blocks. PIXEL_CLS_WEIGHT_all_ones = 'PIXEL_CLS_WEIGHT_all_ones' PIXEL_C...
1
$begingroup$
I have this LSTM model model = Sequential() model.add(Masking(mask_value=0, input_shape=(timesteps, features))) model.add(LSTM(100, dropout=0.2, recurrent_dropout=0.2, return_sequences=False)) model.add(Dense(features, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) and shapes X_train (21, 11, 5), y_train (21, 5) . Each timestep is represented by 5 features and return_sequences is set to False because I want to predict one 5D array (the next timestep) for each input sequence of 11 timesteps. I get the error ValueError: y_true and y_pred have different number of output (5!=1) If I reshape the data as X_train (21, 11, 5), y_train (21, 1, 5) instead I get the error ValueError: Inva...