Universitas Publica Moscuensis

Multi tool use
Universitas Publica Moscuensis Lomonosoviana |
Московский государственный университет имени М. В. Ломоносова |
 |
Universitas Moscuensis anno 1798 |
Anglice: Lomonosov Moscow State University
|
Sententia: |
Наука есть ясное познание истины, просвещение разума |
Sent. (Latine): |
Scientia est clara cognitio veritatis, illustratio mentis |
Locus: |
Moscua
|
|
Universitas Publica Moscuensis Lomonosoviana (pro Moscuensis[1][2] videntur et Moscoviensis[3][4], Mosquensis[5][6]; Russice: Московский государственный университет имени М. В. Ломоносова, tr. Moskovskij gosudarstvennyj universitet imeni M. V. Lomonosova) est maxima et antiquissima universitas studiorum Russica.
Haec universitas studiorum 15 instituta investigatoria, 43 facultates, et plusquam 300 cathedras habet.
Universitas die 25 Ianuarii 1755 Moscuae condita est. Ad annum 1917, Universitas Caesarea Moscuensis[2] (Mosquensis[6]) appellabatur, dein appellationem universitatis publicae[7] accepit. Ab anno 1940 e nomine conditoris, docti Michaelis Lomonosovi, vocatur.
Symeon Ivashkovskij, Arsenius Menstschikow, Boris Ordynskij, Theodorus Korsch, Sergius Sobolewski, Helgus Nikitinski litteras Latinas et Graecas in Universitate Moscuensi docuerunt.
Notae |
↑ "Universitas Moscuensis": I.H. Frommann, Stricturae de statu scientiarum et artium in imperio Russico, p. 32; Latinitas, tomus 46, p. 244
↑ 2.02.1 "univesitas caesarea Moscuensis": Slavica Gottingensia, pars 1, p. 1356
↑ "Universitas caesarea Moscoviensis": ' J.L.Ch. Gravenhorst, Ichneumonologia europaea, tomus 1, p. v
↑ "Academia Moscoviensis Elisabetana Lomonosoviana": [1]; [2]
↑ "Universitas Mosquensis": O. Struve, Librorum in bibliotheca speculae Pulcovensis anno 1858 exeunte contentorum catalogus systematicus, p. v
↑ 6.06.1 "Universitas Caesarea Mosquensis": Det Kongelige Frederiks universitets hundredaarsjubilæum 1911, p. 236
↑ "государственный publicus, a, um": [3].
Nexus externi |
- Pagina officialis
Pagina de Universitate Publica Moscuensi Encyclopaediae Russicae Magnae .mw-parser-output .existinglinksgray a,.mw-parser-output .existinglinksgray a:visited{color:gray}.mw-parser-output .existinglinksgray a.new{color:#ba0000}.mw-parser-output .existinglinksgray a.new:visited{color:#a55858}
(Russice)

|
Vicimedia Communia plura habent quae ad Universitatem Publicam Moscuensem spectant.
|
KhmxWmbQzCNNP0gOwKkAiDxxR4qWRPOw3 p1 vM,7HOYr
Popular posts from this blog
Tabula multilinguis Rosettana in Museo Britannico ostenditur. Tabula Rosettana, [1] etiam titulo OGIS 90 agnita, est stela decreto de rebus sacris in Aegypto anno 196 a.C.n. lato inscripta. Tabula iuxta Rosettam Aegypti, urbem in delta Nili et ad oram maris Mediterranei iacentem, anno 1799 a milite Francico reperta est. Inventio stelae, linguis duabus scripturisque tribus inscriptae, eruditis Instituti Aegypti statim nuntiata est; ibi enim iussu imperatoris Napoleonis eruditi omnium scientiarum (sub aegide Commissionis Scientiarum et Artium) properaverant cum expeditione Francica. Qua a Britannis mox debellata, tabula Rosettana Londinium missa hodie apud Museum Britannicum iacet. Textus Graecus cito lectus interpretationi textuum Aegyptiorum (in formis hieroglyphica et demotica expressorum) gradatim adiuvit. Denique textum plene interpretatus est Ioannes Franciscus Champollion. Ab opere eruditorum cumulativo coepit hodiernus scripturae hieroglyphicae linguaeque Aegyptiae a...
1
$begingroup$
This is what I mean as document text image: I want to label the texts in image as separate blocks and my model should detect these labels as classes. NOTE: This is how the end result should be like: The labels like Block 1, Block 2, Block 3,.. should be Logo, Title, Date,.. Others, etc. Work done: First approach : I tried to implement this method via Object Detection, it didn't work. It didn't even detect any text. Second approach : Then I tried it using PixelLink. As this model is build for scene text detection, it detected each and every text in the image. But this method can detect multiple lines of text if the threshold values are increased. But I have no idea how do I add labels to the text blocks. PIXEL_CLS_WEIGHT_all_ones = 'PIXEL_CLS_WEIGHT_all_ones' PIXEL_C...
1
$begingroup$
I have this LSTM model model = Sequential() model.add(Masking(mask_value=0, input_shape=(timesteps, features))) model.add(LSTM(100, dropout=0.2, recurrent_dropout=0.2, return_sequences=False)) model.add(Dense(features, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) and shapes X_train (21, 11, 5), y_train (21, 5) . Each timestep is represented by 5 features and return_sequences is set to False because I want to predict one 5D array (the next timestep) for each input sequence of 11 timesteps. I get the error ValueError: y_true and y_pred have different number of output (5!=1) If I reshape the data as X_train (21, 11, 5), y_train (21, 1, 5) instead I get the error ValueError: Inva...