Severus Snape

Multi tool use

Severi Snapis partes, in pelliculis de Harrio Pottero, agit Alanus Rickman
Severus Snape (gen. Severi Snapis[1]) est persona in fabulis de Harrio Pottero a J.K. Rowling scriptis. In prima fabula, Harrius Potter et philosophi lapis, est adversarius Harrii et antagonista usque ad finalia capitula. Ut series progreditur, personam Severi multiplicem esse gradatim indicatur. Utris partibus ex animo faveat ei patefactae sunt in fabula finali, Harrius Potter et mortalia insignia. Severus est in omni libro Harrii Potter.
Severus docet potiones in libris primo usque ad quintum. In libro sexto docet "quomodo artes tenebrosae arceantur[2], in libro septimo Severus est praeses scholae "Hogwarts".
Severus Snape non solum mortivorus[3] sed etiam socius Phoenicis ordinis est. Postquam audiverat partem prophetiae de filio Liliae Potteri, volebat pugnare contra Voldemortem. Severus diu Liliam amaverat.
Venificia Eileena Regulus et muggle[4] Tiberius Snape genuerunt Severum.
Bibliographia |
- Rowling, Rowling (2003). Harrius Potter Et Philosophi Lapis. London: Bloomsbury. ISBN 9781582348254
- Needham, Peter (2007). Harrius Potter Et Camera Secretorum. London: Bloomsbury. ISBN 9781599900674
Nexus externi |
De Severo Snape in Lexico Potteriano
Colloquium percontativum cum Ioanna Rowling de Severo Snape apud accio-quote.org
- Haec pagina macris annotata
Notae |
↑ Needham, e.g. Harrius Potter et Philosophi Lapis p. 119 “cum Harrius Hagridum de classe Snapis certiorem fecisset...”
↑ E.g., Needham 2003, p. 56
↑ Haec appellatio a Vicipaediano e lingua indigena in sermonem Latinum conversa est. Extra Vicipaediam huius locutionis testificatio vix inveniri potest.
↑ E.g., Needham 2003, p. 8
2f5Z09wct pZFW,7n,0y15mGbz8QkR,Ke N
Popular posts from this blog
Tabula multilinguis Rosettana in Museo Britannico ostenditur. Tabula Rosettana, [1] etiam titulo OGIS 90 agnita, est stela decreto de rebus sacris in Aegypto anno 196 a.C.n. lato inscripta. Tabula iuxta Rosettam Aegypti, urbem in delta Nili et ad oram maris Mediterranei iacentem, anno 1799 a milite Francico reperta est. Inventio stelae, linguis duabus scripturisque tribus inscriptae, eruditis Instituti Aegypti statim nuntiata est; ibi enim iussu imperatoris Napoleonis eruditi omnium scientiarum (sub aegide Commissionis Scientiarum et Artium) properaverant cum expeditione Francica. Qua a Britannis mox debellata, tabula Rosettana Londinium missa hodie apud Museum Britannicum iacet. Textus Graecus cito lectus interpretationi textuum Aegyptiorum (in formis hieroglyphica et demotica expressorum) gradatim adiuvit. Denique textum plene interpretatus est Ioannes Franciscus Champollion. Ab opere eruditorum cumulativo coepit hodiernus scripturae hieroglyphicae linguaeque Aegyptiae a...
1
$begingroup$
This is what I mean as document text image: I want to label the texts in image as separate blocks and my model should detect these labels as classes. NOTE: This is how the end result should be like: The labels like Block 1, Block 2, Block 3,.. should be Logo, Title, Date,.. Others, etc. Work done: First approach : I tried to implement this method via Object Detection, it didn't work. It didn't even detect any text. Second approach : Then I tried it using PixelLink. As this model is build for scene text detection, it detected each and every text in the image. But this method can detect multiple lines of text if the threshold values are increased. But I have no idea how do I add labels to the text blocks. PIXEL_CLS_WEIGHT_all_ones = 'PIXEL_CLS_WEIGHT_all_ones' PIXEL_C...
1
$begingroup$
I have this LSTM model model = Sequential() model.add(Masking(mask_value=0, input_shape=(timesteps, features))) model.add(LSTM(100, dropout=0.2, recurrent_dropout=0.2, return_sequences=False)) model.add(Dense(features, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) and shapes X_train (21, 11, 5), y_train (21, 5) . Each timestep is represented by 5 features and return_sequences is set to False because I want to predict one 5D array (the next timestep) for each input sequence of 11 timesteps. I get the error ValueError: y_true and y_pred have different number of output (5!=1) If I reshape the data as X_train (21, 11, 5), y_train (21, 1, 5) instead I get the error ValueError: Inva...