Nicolaus Černych

Multi tool use

Nicolaus Černych
Res apud Vicidata repertae:
Nativitas:
6 Octobris 1931;
UsmanObitus:
26 Maii 2004;
Regio VoronegiensisPatria:
Unio Sovietica, Ucraina
Officium
Munus: astronomus
Familia
Coniunx: Ludmila Černych
Proles: Margarita Chernyj, Q24301362
Nicolaus Stephani filius Černych (Russice Николай Степанович Черных, tr. Nikolaj Stepanovič Černych; Ucrainice Микола Степанович Черних, tr. Mykola Stepanovyč Černych; 6 Octobris 1931 – 26 Maii 2004) fuit astronomus Russicus Sovieticus et Ucrainicus.
In oppido Usman' nunc regionis Lipetzkensis Russiae natus, anno 1941 cum familia sua in regionem Ircutensem movit ubi alumnus fuit facultatis physico-mathematicae Instituti Paedagogici Ircutensis (nunc in Universitatem Ircutensem inclusi), annis a 1954 ad 1959 ibi studens (et dein in honorem instituti asteroidem 2585 Irpedina, quam anno 1979 invenit, nomen dedit). Anno 1957 autem Ludmilam uxorem duxit, postquam eacum ad finem vitae suae collaboravit, annis ab 1958 ad 1961 in laboratorio temporis et frequentiae Ircutensi et ab anno 1963 in Observatorio Astrophysico Crimaeae operi favens. Peritus fuit astronometriae et dynamicae corporum minorum systematis solaris. Asteroides 6619 Kolya (Kolya est forma diminutiva Russica nominis Nicolai), a Ludmila Černych inventa, in eius honorem nomen obtinuit. Asteroides 2325 Chernykh autem ex Nicolao et Ludmila Černych (translitteratione alia, Chernykh) nominatus est.
Nexus externi |
"К 80-летию Николая Степановича Черных", commemoratio octogenaria Nicolai Černych .mw-parser-output .existinglinksgray a,.mw-parser-output .existinglinksgray a:visited{color:gray}.mw-parser-output .existinglinksgray a.new{color:#ba0000}.mw-parser-output .existinglinksgray a.new:visited{color:#a55858}
(Russice)
Pagina de Nicolao Černych, alumno claro, in situ interretiali, iubilaeo saeculari Universitatis Ircutensis dedicato
(Russice)
Pagina de Nicolao Černych in situ interretiali Космический мемориал
(Russice)
w7WzpV,zfS1WlrJP,85jjeyxN BKR6,Cqt7pyOwhOMy,o37UBRKngMIPK3D8HLO04W93m1vWHb78
Popular posts from this blog
Tabula multilinguis Rosettana in Museo Britannico ostenditur. Tabula Rosettana, [1] etiam titulo OGIS 90 agnita, est stela decreto de rebus sacris in Aegypto anno 196 a.C.n. lato inscripta. Tabula iuxta Rosettam Aegypti, urbem in delta Nili et ad oram maris Mediterranei iacentem, anno 1799 a milite Francico reperta est. Inventio stelae, linguis duabus scripturisque tribus inscriptae, eruditis Instituti Aegypti statim nuntiata est; ibi enim iussu imperatoris Napoleonis eruditi omnium scientiarum (sub aegide Commissionis Scientiarum et Artium) properaverant cum expeditione Francica. Qua a Britannis mox debellata, tabula Rosettana Londinium missa hodie apud Museum Britannicum iacet. Textus Graecus cito lectus interpretationi textuum Aegyptiorum (in formis hieroglyphica et demotica expressorum) gradatim adiuvit. Denique textum plene interpretatus est Ioannes Franciscus Champollion. Ab opere eruditorum cumulativo coepit hodiernus scripturae hieroglyphicae linguaeque Aegyptiae a...
1
$begingroup$
This is what I mean as document text image: I want to label the texts in image as separate blocks and my model should detect these labels as classes. NOTE: This is how the end result should be like: The labels like Block 1, Block 2, Block 3,.. should be Logo, Title, Date,.. Others, etc. Work done: First approach : I tried to implement this method via Object Detection, it didn't work. It didn't even detect any text. Second approach : Then I tried it using PixelLink. As this model is build for scene text detection, it detected each and every text in the image. But this method can detect multiple lines of text if the threshold values are increased. But I have no idea how do I add labels to the text blocks. PIXEL_CLS_WEIGHT_all_ones = 'PIXEL_CLS_WEIGHT_all_ones' PIXEL_C...
1
$begingroup$
I have this LSTM model model = Sequential() model.add(Masking(mask_value=0, input_shape=(timesteps, features))) model.add(LSTM(100, dropout=0.2, recurrent_dropout=0.2, return_sequences=False)) model.add(Dense(features, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) and shapes X_train (21, 11, 5), y_train (21, 5) . Each timestep is represented by 5 features and return_sequences is set to False because I want to predict one 5D array (the next timestep) for each input sequence of 11 timesteps. I get the error ValueError: y_true and y_pred have different number of output (5!=1) If I reshape the data as X_train (21, 11, 5), y_train (21, 1, 5) instead I get the error ValueError: Inva...