Petalum

Multi tool use

Diagramma partium floris maturi. Hic, perianthium in calycem (sepala) et corollam digeritur.

In
Brugmansia aurea, planta florente familiae Solanacearum, corolla tubularis-campanulata punctos longos fert et ex calyce tubulari emergit.

In
Pelargonio peltato, structura floralis paene eadem ac structura geraniorum est, sed manifeste zygomorpha.
Petalum est folium mutatum quod cum aliis petalis reproductivas florum partes circumdat. Petala saepe sunt vivide colorata vel insolite formata ad pollinatores attrahendos. Omnia floris petala una appellantur corolla. Petala plerumque coniunguntur cum sepalis, aliis foliis praecipuis, quae una calycem constituunt et aliquantulum sub corolla iacent. Calyx et corolla una perianthium sunt. Cum floris petala et sepala difficile distinguantur, una tepala appellantur. Inter genera vocabulum tepalum proprie habentia sunt Aloe et Tulipa. E converso, generibus Rosae et Phaseolo sepala et petala bene distincta sunt. Tepala, cum petalis similia sint, petaloidea appellantur, ut in monocotyledonibus petaloideis, ordinibus monocotyledonum quibus sunt tepala clare colorata; quia Liliales comprehendunt, aliud eorum nomen est monocotyledones lilioidei.
Quamquam petala plerumque sunt clarissimae florum ab animalibus pollinatorum partes, species a vento pollinatae, sicut Poaceae, aut minima habent petala, aut eis omnino carent.
Nexus interni
- Merositas
- Symmetria floralis
Bibliographia |
- Graham, S. W., et S. C. H. Barrett. 2004. Phylogenetic reconstruction of the evolution of stylar polymorphisms in Narcissus (Amaryllidaceae). American Journal of Botany 91 (7): 1007–1021. doi:10.3732/ajb.91.7.1007. Textus interretialis. PMID 21653457.
- Simpson, Michael G. 2011. Plant Systematics. Academic Press. ISBN 978-0-08-051404-8. Google Books.
- Foster, Tony. 2014. Botany Word of the Day. Phytography. Apud blogspot.com.
Nexus externi |

|
Vicimedia Communia plura habent quae ad petala spectant.
|
1alQmFwUJo9uha8u,dM41PI4MQDol2VGL0A9Px4z p9PUC QK7X7AnL4Db JiZSOBVBBFRidwLWcGJRLf9
Popular posts from this blog
Tabula multilinguis Rosettana in Museo Britannico ostenditur. Tabula Rosettana, [1] etiam titulo OGIS 90 agnita, est stela decreto de rebus sacris in Aegypto anno 196 a.C.n. lato inscripta. Tabula iuxta Rosettam Aegypti, urbem in delta Nili et ad oram maris Mediterranei iacentem, anno 1799 a milite Francico reperta est. Inventio stelae, linguis duabus scripturisque tribus inscriptae, eruditis Instituti Aegypti statim nuntiata est; ibi enim iussu imperatoris Napoleonis eruditi omnium scientiarum (sub aegide Commissionis Scientiarum et Artium) properaverant cum expeditione Francica. Qua a Britannis mox debellata, tabula Rosettana Londinium missa hodie apud Museum Britannicum iacet. Textus Graecus cito lectus interpretationi textuum Aegyptiorum (in formis hieroglyphica et demotica expressorum) gradatim adiuvit. Denique textum plene interpretatus est Ioannes Franciscus Champollion. Ab opere eruditorum cumulativo coepit hodiernus scripturae hieroglyphicae linguaeque Aegyptiae a...
1
$begingroup$
This is what I mean as document text image: I want to label the texts in image as separate blocks and my model should detect these labels as classes. NOTE: This is how the end result should be like: The labels like Block 1, Block 2, Block 3,.. should be Logo, Title, Date,.. Others, etc. Work done: First approach : I tried to implement this method via Object Detection, it didn't work. It didn't even detect any text. Second approach : Then I tried it using PixelLink. As this model is build for scene text detection, it detected each and every text in the image. But this method can detect multiple lines of text if the threshold values are increased. But I have no idea how do I add labels to the text blocks. PIXEL_CLS_WEIGHT_all_ones = 'PIXEL_CLS_WEIGHT_all_ones' PIXEL_C...
1
$begingroup$
I have this LSTM model model = Sequential() model.add(Masking(mask_value=0, input_shape=(timesteps, features))) model.add(LSTM(100, dropout=0.2, recurrent_dropout=0.2, return_sequences=False)) model.add(Dense(features, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) and shapes X_train (21, 11, 5), y_train (21, 5) . Each timestep is represented by 5 features and return_sequences is set to False because I want to predict one 5D array (the next timestep) for each input sequence of 11 timesteps. I get the error ValueError: y_true and y_pred have different number of output (5!=1) If I reshape the data as X_train (21, 11, 5), y_train (21, 1, 5) instead I get the error ValueError: Inva...