Gradus academicus

Multi tool use

Conventus doctorum in Universitate Parisiensi habitus. Ex manuscripto mediaevale.
Gradus academicus est diploma collegiale vel universitarium, saepe cum titulo et aliquando cum honore academico consociatum, quod usitate conceditur cum acceptor aut cursum studiorum mandatum satis bene finiverit aut conatum scholasticum gradu dignum administraverit. Gradus usitatissime hodie concessi gradus consociatus, baccalaureatus, magistralis, et doctoralis sunt. Plurimi educationis altioris instituta testimonia et nonnulla programmata quae ad Magistratum Studiorum Provectorum adducunt plerumque offerunt, quod paene ubique diplôme d'études supérieures spécialisées, primo nomine Francico, appellatur.
Nexus interni
- Accreditatio educationalis
- Baccalaureus
- Doctor
- Doctor philosophiae
- Magister in Studiis
- Magister Divinitatis
- Eruditio altior
- Gradus ad eundem
- Gradus externus
- Gradus honoris causa
- Inflatio academica
- Praemia academica in Hispania
- Stola academica
- Universitas pontificalis
Bibliographia |
- Rüegg, Walter. 1992. Universities in the Middle Ages. A History of the University in Europe, 1. Cantabrigiae: Cambridge University Press. ISBN 0521361052.
- Verger, J. 1998a. Doctor, doctoratus. Lexikon des Mittelalters. In vol. 3. Stutgartiae: J. B. Metzler.
- Verger, J. 1999b. Licentia. Lexikon des Mittelalters. In vol. 5. Stutgartiae: J. B. Metzler.
TOxzNfPgI,67aJPiyLq IRtNB5w HAUin7sJ1,yXpNCZ gqy7Hp I8Pgf,t2ijBcZOWrOTptRH,VYXKTUW O,dUEGH c,Lui,LQR0GfekZxGxKT a
Popular posts from this blog
Tabula multilinguis Rosettana in Museo Britannico ostenditur. Tabula Rosettana, [1] etiam titulo OGIS 90 agnita, est stela decreto de rebus sacris in Aegypto anno 196 a.C.n. lato inscripta. Tabula iuxta Rosettam Aegypti, urbem in delta Nili et ad oram maris Mediterranei iacentem, anno 1799 a milite Francico reperta est. Inventio stelae, linguis duabus scripturisque tribus inscriptae, eruditis Instituti Aegypti statim nuntiata est; ibi enim iussu imperatoris Napoleonis eruditi omnium scientiarum (sub aegide Commissionis Scientiarum et Artium) properaverant cum expeditione Francica. Qua a Britannis mox debellata, tabula Rosettana Londinium missa hodie apud Museum Britannicum iacet. Textus Graecus cito lectus interpretationi textuum Aegyptiorum (in formis hieroglyphica et demotica expressorum) gradatim adiuvit. Denique textum plene interpretatus est Ioannes Franciscus Champollion. Ab opere eruditorum cumulativo coepit hodiernus scripturae hieroglyphicae linguaeque Aegyptiae a...
1
$begingroup$
This is what I mean as document text image: I want to label the texts in image as separate blocks and my model should detect these labels as classes. NOTE: This is how the end result should be like: The labels like Block 1, Block 2, Block 3,.. should be Logo, Title, Date,.. Others, etc. Work done: First approach : I tried to implement this method via Object Detection, it didn't work. It didn't even detect any text. Second approach : Then I tried it using PixelLink. As this model is build for scene text detection, it detected each and every text in the image. But this method can detect multiple lines of text if the threshold values are increased. But I have no idea how do I add labels to the text blocks. PIXEL_CLS_WEIGHT_all_ones = 'PIXEL_CLS_WEIGHT_all_ones' PIXEL_C...
1
$begingroup$
I have this LSTM model model = Sequential() model.add(Masking(mask_value=0, input_shape=(timesteps, features))) model.add(LSTM(100, dropout=0.2, recurrent_dropout=0.2, return_sequences=False)) model.add(Dense(features, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) and shapes X_train (21, 11, 5), y_train (21, 5) . Each timestep is represented by 5 features and return_sequences is set to False because I want to predict one 5D array (the next timestep) for each input sequence of 11 timesteps. I get the error ValueError: y_true and y_pred have different number of output (5!=1) If I reshape the data as X_train (21, 11, 5), y_train (21, 1, 5) instead I get the error ValueError: Inva...