InvalidArgumentError: incompatible shapes: [32,153] vs [32,5] , when using VAE












0












$begingroup$


I'm working on a sequence to sequence model using LSTM, the model worked perfectly with an autoencoder, but when I try to use a Variational autoencoder by adding the mean and deviation layer and changing the loss function , I get this error:




InvalidArgumentError: Incompatible shapes: [32,153] vs [32,5]




  # Train - Test Split
X, y = lines.eng, lines.fr
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size =
0.1)

def generate_batch(X = X_train, y = y_train, batch_size = 32):
''' Generate a batch of data '''
while True:
for j in range(0, len(X), batch_size):
encoder_input_data = np.zeros((batch_size
,max_len_eng),dtype='float32') #max_len_eng = 3
decoder_input_data = np.zeros((batch_size,
max_len_fr),dtype='float32')
#max_len_french =5
decoder_target_data = np.zeros((batch_size,max_len_fr,
num_decoder_tokens), dtype='float32')

for i, (input_text, target_text) in
enumerate(zip(X[j:j+batch_size], y[j:j+batch_size])):
for t, word in enumerate(input_text.split()):
encoder_input_data[i, t] = input_token_index[word]
for t, word in enumerate(target_text.split()):
# decoder_target_data is ahead of decoder_input_data by one timestep
if t<len(target_text.split())-1:
decoder_input_data[i, t] =
target_token_index[word]
if t > 0:
# decoder_target_data will be ahead by one timestep
# and will not include the start character.
decoder_target_data[i, t - 1,
target_token_index[word]] = 1
yield([encoder_input_data, decoder_input_data],
decoder_target_data)

encoder_inputs = Input(shape=(None,))
en_x= Embedding(num_encoder_tokens, embedding_size,mask_zero = True)
(encoder_inputs)
encoder = LSTM(50, return_state=True)
encoder_outputs, state_h, state_c = encoder(en_x) #initialisé à 0
encoder_states = [state_h, state_c]

""" -------- ADD VAE -------"""
latent_dim =embedding_size
# output layer for mean and log variance
z_mu = Dense(latent_dim)(encoder_outputs) #remplacer h
z_log_var = Dense(latent_dim)(encoder_outputs)
def sampling(args):
batch_size=1
z_mean, z_log_sigma = args
epsilon = K.random_normal(shape=(batch_size, latent_dim),
mean=0., stddev=1.)
return z_mean + K.exp(z_log_sigma) * epsilon

z = Lambda(sampling, output_shape=(latent_dim,))([z_mu, z_log_var])

state_h= z
state_c = z
encoder_states = [state_h, state_c]
#loss function with VAE
def vae_loss(y_true, y_pred):
""" Calculate loss = reconstruction loss + KL loss for each data in
minibatch """
# E[log P(X|z)]
recon = K.sum(K.binary_crossentropy(y_pred, y_true), axis=1)
# D_KL(Q(z|X) || P(z|X)); calculate in closed form as both dist.
are Gaussian
kl = 0.5 * K.sum(K.exp(z_log_var) + K.square(z_mu) - 1. -
z_log_var, axis=1)
return recon + kl[:, None]


# Set up the decoder, using `encoder_states` as initial state.
decoder_inputs = Input(shape=(None,))
dex= Embedding(num_decoder_tokens, embedding_size,mask_zero = True)
#num_decoder_tokens = 152
final_dex= dex(decoder_inputs)
decoder_lstm = LSTM(50, return_sequences=True, return_state=True)
decoder_outputs, _, _ =
decoder_lstm(final_dex,initial_state=encoder_states)
decoder_dense = Dense(num_decoder_tokens, activation='softmax')
decoder_outputs = decoder_dense(decoder_outputs)
model = Model([encoder_inputs, decoder_inputs], decoder_outputs)
model.compile(optimizer='rmsprop', loss=vae_loss, metrics=['acc'])
model.summary()
train_samples = len(X_train)
val_samples = len(X_test)
batch_size = 32
epochs = 5
model.fit_generator(generator = generate_batch(X_train, y_train,
batch_size = batch_size),
steps_per_epoch = train_samples//batch_size,
epochs=epochs,
validation_data = generate_batch(X_test, y_test,
batch_size = batch_size),
validation_steps = 1)

end = time.time()
print("temp d'exec:", end-start)


I tried all solutions suggested on other posts, but no one helped me.
Thanks.










share|improve this question









$endgroup$

















    0












    $begingroup$


    I'm working on a sequence to sequence model using LSTM, the model worked perfectly with an autoencoder, but when I try to use a Variational autoencoder by adding the mean and deviation layer and changing the loss function , I get this error:




    InvalidArgumentError: Incompatible shapes: [32,153] vs [32,5]




      # Train - Test Split
    X, y = lines.eng, lines.fr
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size =
    0.1)

    def generate_batch(X = X_train, y = y_train, batch_size = 32):
    ''' Generate a batch of data '''
    while True:
    for j in range(0, len(X), batch_size):
    encoder_input_data = np.zeros((batch_size
    ,max_len_eng),dtype='float32') #max_len_eng = 3
    decoder_input_data = np.zeros((batch_size,
    max_len_fr),dtype='float32')
    #max_len_french =5
    decoder_target_data = np.zeros((batch_size,max_len_fr,
    num_decoder_tokens), dtype='float32')

    for i, (input_text, target_text) in
    enumerate(zip(X[j:j+batch_size], y[j:j+batch_size])):
    for t, word in enumerate(input_text.split()):
    encoder_input_data[i, t] = input_token_index[word]
    for t, word in enumerate(target_text.split()):
    # decoder_target_data is ahead of decoder_input_data by one timestep
    if t<len(target_text.split())-1:
    decoder_input_data[i, t] =
    target_token_index[word]
    if t > 0:
    # decoder_target_data will be ahead by one timestep
    # and will not include the start character.
    decoder_target_data[i, t - 1,
    target_token_index[word]] = 1
    yield([encoder_input_data, decoder_input_data],
    decoder_target_data)

    encoder_inputs = Input(shape=(None,))
    en_x= Embedding(num_encoder_tokens, embedding_size,mask_zero = True)
    (encoder_inputs)
    encoder = LSTM(50, return_state=True)
    encoder_outputs, state_h, state_c = encoder(en_x) #initialisé à 0
    encoder_states = [state_h, state_c]

    """ -------- ADD VAE -------"""
    latent_dim =embedding_size
    # output layer for mean and log variance
    z_mu = Dense(latent_dim)(encoder_outputs) #remplacer h
    z_log_var = Dense(latent_dim)(encoder_outputs)
    def sampling(args):
    batch_size=1
    z_mean, z_log_sigma = args
    epsilon = K.random_normal(shape=(batch_size, latent_dim),
    mean=0., stddev=1.)
    return z_mean + K.exp(z_log_sigma) * epsilon

    z = Lambda(sampling, output_shape=(latent_dim,))([z_mu, z_log_var])

    state_h= z
    state_c = z
    encoder_states = [state_h, state_c]
    #loss function with VAE
    def vae_loss(y_true, y_pred):
    """ Calculate loss = reconstruction loss + KL loss for each data in
    minibatch """
    # E[log P(X|z)]
    recon = K.sum(K.binary_crossentropy(y_pred, y_true), axis=1)
    # D_KL(Q(z|X) || P(z|X)); calculate in closed form as both dist.
    are Gaussian
    kl = 0.5 * K.sum(K.exp(z_log_var) + K.square(z_mu) - 1. -
    z_log_var, axis=1)
    return recon + kl[:, None]


    # Set up the decoder, using `encoder_states` as initial state.
    decoder_inputs = Input(shape=(None,))
    dex= Embedding(num_decoder_tokens, embedding_size,mask_zero = True)
    #num_decoder_tokens = 152
    final_dex= dex(decoder_inputs)
    decoder_lstm = LSTM(50, return_sequences=True, return_state=True)
    decoder_outputs, _, _ =
    decoder_lstm(final_dex,initial_state=encoder_states)
    decoder_dense = Dense(num_decoder_tokens, activation='softmax')
    decoder_outputs = decoder_dense(decoder_outputs)
    model = Model([encoder_inputs, decoder_inputs], decoder_outputs)
    model.compile(optimizer='rmsprop', loss=vae_loss, metrics=['acc'])
    model.summary()
    train_samples = len(X_train)
    val_samples = len(X_test)
    batch_size = 32
    epochs = 5
    model.fit_generator(generator = generate_batch(X_train, y_train,
    batch_size = batch_size),
    steps_per_epoch = train_samples//batch_size,
    epochs=epochs,
    validation_data = generate_batch(X_test, y_test,
    batch_size = batch_size),
    validation_steps = 1)

    end = time.time()
    print("temp d'exec:", end-start)


    I tried all solutions suggested on other posts, but no one helped me.
    Thanks.










    share|improve this question









    $endgroup$















      0












      0








      0





      $begingroup$


      I'm working on a sequence to sequence model using LSTM, the model worked perfectly with an autoencoder, but when I try to use a Variational autoencoder by adding the mean and deviation layer and changing the loss function , I get this error:




      InvalidArgumentError: Incompatible shapes: [32,153] vs [32,5]




        # Train - Test Split
      X, y = lines.eng, lines.fr
      X_train, X_test, y_train, y_test = train_test_split(X, y, test_size =
      0.1)

      def generate_batch(X = X_train, y = y_train, batch_size = 32):
      ''' Generate a batch of data '''
      while True:
      for j in range(0, len(X), batch_size):
      encoder_input_data = np.zeros((batch_size
      ,max_len_eng),dtype='float32') #max_len_eng = 3
      decoder_input_data = np.zeros((batch_size,
      max_len_fr),dtype='float32')
      #max_len_french =5
      decoder_target_data = np.zeros((batch_size,max_len_fr,
      num_decoder_tokens), dtype='float32')

      for i, (input_text, target_text) in
      enumerate(zip(X[j:j+batch_size], y[j:j+batch_size])):
      for t, word in enumerate(input_text.split()):
      encoder_input_data[i, t] = input_token_index[word]
      for t, word in enumerate(target_text.split()):
      # decoder_target_data is ahead of decoder_input_data by one timestep
      if t<len(target_text.split())-1:
      decoder_input_data[i, t] =
      target_token_index[word]
      if t > 0:
      # decoder_target_data will be ahead by one timestep
      # and will not include the start character.
      decoder_target_data[i, t - 1,
      target_token_index[word]] = 1
      yield([encoder_input_data, decoder_input_data],
      decoder_target_data)

      encoder_inputs = Input(shape=(None,))
      en_x= Embedding(num_encoder_tokens, embedding_size,mask_zero = True)
      (encoder_inputs)
      encoder = LSTM(50, return_state=True)
      encoder_outputs, state_h, state_c = encoder(en_x) #initialisé à 0
      encoder_states = [state_h, state_c]

      """ -------- ADD VAE -------"""
      latent_dim =embedding_size
      # output layer for mean and log variance
      z_mu = Dense(latent_dim)(encoder_outputs) #remplacer h
      z_log_var = Dense(latent_dim)(encoder_outputs)
      def sampling(args):
      batch_size=1
      z_mean, z_log_sigma = args
      epsilon = K.random_normal(shape=(batch_size, latent_dim),
      mean=0., stddev=1.)
      return z_mean + K.exp(z_log_sigma) * epsilon

      z = Lambda(sampling, output_shape=(latent_dim,))([z_mu, z_log_var])

      state_h= z
      state_c = z
      encoder_states = [state_h, state_c]
      #loss function with VAE
      def vae_loss(y_true, y_pred):
      """ Calculate loss = reconstruction loss + KL loss for each data in
      minibatch """
      # E[log P(X|z)]
      recon = K.sum(K.binary_crossentropy(y_pred, y_true), axis=1)
      # D_KL(Q(z|X) || P(z|X)); calculate in closed form as both dist.
      are Gaussian
      kl = 0.5 * K.sum(K.exp(z_log_var) + K.square(z_mu) - 1. -
      z_log_var, axis=1)
      return recon + kl[:, None]


      # Set up the decoder, using `encoder_states` as initial state.
      decoder_inputs = Input(shape=(None,))
      dex= Embedding(num_decoder_tokens, embedding_size,mask_zero = True)
      #num_decoder_tokens = 152
      final_dex= dex(decoder_inputs)
      decoder_lstm = LSTM(50, return_sequences=True, return_state=True)
      decoder_outputs, _, _ =
      decoder_lstm(final_dex,initial_state=encoder_states)
      decoder_dense = Dense(num_decoder_tokens, activation='softmax')
      decoder_outputs = decoder_dense(decoder_outputs)
      model = Model([encoder_inputs, decoder_inputs], decoder_outputs)
      model.compile(optimizer='rmsprop', loss=vae_loss, metrics=['acc'])
      model.summary()
      train_samples = len(X_train)
      val_samples = len(X_test)
      batch_size = 32
      epochs = 5
      model.fit_generator(generator = generate_batch(X_train, y_train,
      batch_size = batch_size),
      steps_per_epoch = train_samples//batch_size,
      epochs=epochs,
      validation_data = generate_batch(X_test, y_test,
      batch_size = batch_size),
      validation_steps = 1)

      end = time.time()
      print("temp d'exec:", end-start)


      I tried all solutions suggested on other posts, but no one helped me.
      Thanks.










      share|improve this question









      $endgroup$




      I'm working on a sequence to sequence model using LSTM, the model worked perfectly with an autoencoder, but when I try to use a Variational autoencoder by adding the mean and deviation layer and changing the loss function , I get this error:




      InvalidArgumentError: Incompatible shapes: [32,153] vs [32,5]




        # Train - Test Split
      X, y = lines.eng, lines.fr
      X_train, X_test, y_train, y_test = train_test_split(X, y, test_size =
      0.1)

      def generate_batch(X = X_train, y = y_train, batch_size = 32):
      ''' Generate a batch of data '''
      while True:
      for j in range(0, len(X), batch_size):
      encoder_input_data = np.zeros((batch_size
      ,max_len_eng),dtype='float32') #max_len_eng = 3
      decoder_input_data = np.zeros((batch_size,
      max_len_fr),dtype='float32')
      #max_len_french =5
      decoder_target_data = np.zeros((batch_size,max_len_fr,
      num_decoder_tokens), dtype='float32')

      for i, (input_text, target_text) in
      enumerate(zip(X[j:j+batch_size], y[j:j+batch_size])):
      for t, word in enumerate(input_text.split()):
      encoder_input_data[i, t] = input_token_index[word]
      for t, word in enumerate(target_text.split()):
      # decoder_target_data is ahead of decoder_input_data by one timestep
      if t<len(target_text.split())-1:
      decoder_input_data[i, t] =
      target_token_index[word]
      if t > 0:
      # decoder_target_data will be ahead by one timestep
      # and will not include the start character.
      decoder_target_data[i, t - 1,
      target_token_index[word]] = 1
      yield([encoder_input_data, decoder_input_data],
      decoder_target_data)

      encoder_inputs = Input(shape=(None,))
      en_x= Embedding(num_encoder_tokens, embedding_size,mask_zero = True)
      (encoder_inputs)
      encoder = LSTM(50, return_state=True)
      encoder_outputs, state_h, state_c = encoder(en_x) #initialisé à 0
      encoder_states = [state_h, state_c]

      """ -------- ADD VAE -------"""
      latent_dim =embedding_size
      # output layer for mean and log variance
      z_mu = Dense(latent_dim)(encoder_outputs) #remplacer h
      z_log_var = Dense(latent_dim)(encoder_outputs)
      def sampling(args):
      batch_size=1
      z_mean, z_log_sigma = args
      epsilon = K.random_normal(shape=(batch_size, latent_dim),
      mean=0., stddev=1.)
      return z_mean + K.exp(z_log_sigma) * epsilon

      z = Lambda(sampling, output_shape=(latent_dim,))([z_mu, z_log_var])

      state_h= z
      state_c = z
      encoder_states = [state_h, state_c]
      #loss function with VAE
      def vae_loss(y_true, y_pred):
      """ Calculate loss = reconstruction loss + KL loss for each data in
      minibatch """
      # E[log P(X|z)]
      recon = K.sum(K.binary_crossentropy(y_pred, y_true), axis=1)
      # D_KL(Q(z|X) || P(z|X)); calculate in closed form as both dist.
      are Gaussian
      kl = 0.5 * K.sum(K.exp(z_log_var) + K.square(z_mu) - 1. -
      z_log_var, axis=1)
      return recon + kl[:, None]


      # Set up the decoder, using `encoder_states` as initial state.
      decoder_inputs = Input(shape=(None,))
      dex= Embedding(num_decoder_tokens, embedding_size,mask_zero = True)
      #num_decoder_tokens = 152
      final_dex= dex(decoder_inputs)
      decoder_lstm = LSTM(50, return_sequences=True, return_state=True)
      decoder_outputs, _, _ =
      decoder_lstm(final_dex,initial_state=encoder_states)
      decoder_dense = Dense(num_decoder_tokens, activation='softmax')
      decoder_outputs = decoder_dense(decoder_outputs)
      model = Model([encoder_inputs, decoder_inputs], decoder_outputs)
      model.compile(optimizer='rmsprop', loss=vae_loss, metrics=['acc'])
      model.summary()
      train_samples = len(X_train)
      val_samples = len(X_test)
      batch_size = 32
      epochs = 5
      model.fit_generator(generator = generate_batch(X_train, y_train,
      batch_size = batch_size),
      steps_per_epoch = train_samples//batch_size,
      epochs=epochs,
      validation_data = generate_batch(X_test, y_test,
      batch_size = batch_size),
      validation_steps = 1)

      end = time.time()
      print("temp d'exec:", end-start)


      I tried all solutions suggested on other posts, but no one helped me.
      Thanks.







      python neural-network lstm autoencoder vae






      share|improve this question













      share|improve this question











      share|improve this question




      share|improve this question










      asked yesterday









      KikioKikio

      638




      638






















          0






          active

          oldest

          votes












          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "557"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: false,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: null,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f48970%2finvalidargumenterror-incompatible-shapes-32-153-vs-32-5-when-using-vae%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          0






          active

          oldest

          votes








          0






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes
















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Data Science Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f48970%2finvalidargumenterror-incompatible-shapes-32-153-vs-32-5-when-using-vae%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          How to label and detect the document text images

          Tabula Rosettana

          Aureus (color)