Christina Bergmann

Multi tool use

Christina Bergmann anno 2010
Christina (vulgo: Christine) Bergmann (nata 7 Decembris 1939 Dresdae) femina in rebus publicis perita Germaniae et sodalis Socialis Democraticae Factionis Germaniae (SPD) est.
Munus |
Post scholam anno 1957 finitam Lipsiae pharmacologiae studebat et ab anno 1963 Berolini pharmacopola laboravit. Anno 1989 doctor promota est.
Cursus honorum |
Post eversionem rerum in Re publica Democratica Germanica ad SPD factionem accessit et annis 1990 ad usque 2004 vicaria praeses SPD Berolini fuit, anno 1990/1991 praeses domus legatorum Berolini et senator huius urbis familiarum feminarum seniorum. 27 Octobris 1998 Gerhardus Schröder (SPD), novus cancellarius foederalis eam Administram Foederalem Feminarum et Iuventutis nominavit. Hunc magistratum ad electionem Dietae Foederalis anni 2002 tenuit. Ea electione frustra candidata Dietae Foederalis fuit.
Nexus externi |

|
Vicimedia Communia plura habent quae ad Christina Bergmann spectant.
|
- Curriculum vitae in pagina SPD Berolini (Lingua Theodisca)
Administri Foederales Familiarum, Feminarum, Iuventutis Seniorumque
|
|
Franciscus-Iosephus Wuermeling (CDU) |Bruno Heck (CDU) |Anna Brauksiepe (CDU) |Hannelora Rönsch (CDU) et Angela Merkel (CDU) |Claudia Nolte (CDU) |Christina Bergmann (SPD) 1998 | Renata Schmidt (SPD) 2002 |Ursula de Leyen (CDU) 2005 |Christina Schröder (CDU) 2009 |Manuela Schwesig (SPD) 2013 | Catharina Barley (SPD) 2017 | Francisca Giffey(SPD) 2018 |
|
Consilium Ministrorum Schröder I (27 Octobris 1998 - 22 Octobris 2002)
|
|
Gerardus Schröder (SPD) |
Iosephus Fischer (Virides) |
Otto Schily (SPD) |
Herta Däubler-Gmelin (SPD) |
Anscharius Lafontaine (SPD) |
Ioannes Eichel (SPD) |
Werner Müller (nullius factionis) |
Carolus-Hinricus Funke (SPD) |
Renata Künast (Virides) |
Gualterus Riester (SPD) |
Rudolphus Scharping (SPD) |
Petrus Struck (SPD) |
Christina Bergmann (SPD) |
Andrea Fischer (Virides) |
Ulla Schmidt (SPD) |
Franciscus Müntefering (SPD) |
Reinhardus Klimmt (SPD) |
Curtus Bodewig (SPD) |
Georgius Trittin (Virides) |
Edelgarda Bulmahn (SPD) |
Heidemaria Wieczorek-Zeul (SPD) |
Bodo Hombach (SPD) |
|
HMT5rzrf4 6AQa8uvt,tZ x1mrcWu5BYA a,HwjITHqXu4rWRKXVrabLz5yw em23TIQ,V5D 9ciGsKb5UKhY7y,K
Popular posts from this blog
Tabula multilinguis Rosettana in Museo Britannico ostenditur. Tabula Rosettana, [1] etiam titulo OGIS 90 agnita, est stela decreto de rebus sacris in Aegypto anno 196 a.C.n. lato inscripta. Tabula iuxta Rosettam Aegypti, urbem in delta Nili et ad oram maris Mediterranei iacentem, anno 1799 a milite Francico reperta est. Inventio stelae, linguis duabus scripturisque tribus inscriptae, eruditis Instituti Aegypti statim nuntiata est; ibi enim iussu imperatoris Napoleonis eruditi omnium scientiarum (sub aegide Commissionis Scientiarum et Artium) properaverant cum expeditione Francica. Qua a Britannis mox debellata, tabula Rosettana Londinium missa hodie apud Museum Britannicum iacet. Textus Graecus cito lectus interpretationi textuum Aegyptiorum (in formis hieroglyphica et demotica expressorum) gradatim adiuvit. Denique textum plene interpretatus est Ioannes Franciscus Champollion. Ab opere eruditorum cumulativo coepit hodiernus scripturae hieroglyphicae linguaeque Aegyptiae a...
1
$begingroup$
This is what I mean as document text image: I want to label the texts in image as separate blocks and my model should detect these labels as classes. NOTE: This is how the end result should be like: The labels like Block 1, Block 2, Block 3,.. should be Logo, Title, Date,.. Others, etc. Work done: First approach : I tried to implement this method via Object Detection, it didn't work. It didn't even detect any text. Second approach : Then I tried it using PixelLink. As this model is build for scene text detection, it detected each and every text in the image. But this method can detect multiple lines of text if the threshold values are increased. But I have no idea how do I add labels to the text blocks. PIXEL_CLS_WEIGHT_all_ones = 'PIXEL_CLS_WEIGHT_all_ones' PIXEL_C...
1
$begingroup$
I have this LSTM model model = Sequential() model.add(Masking(mask_value=0, input_shape=(timesteps, features))) model.add(LSTM(100, dropout=0.2, recurrent_dropout=0.2, return_sequences=False)) model.add(Dense(features, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) and shapes X_train (21, 11, 5), y_train (21, 5) . Each timestep is represented by 5 features and return_sequences is set to False because I want to predict one 5D array (the next timestep) for each input sequence of 11 timesteps. I get the error ValueError: y_true and y_pred have different number of output (5!=1) If I reshape the data as X_train (21, 11, 5), y_train (21, 1, 5) instead I get the error ValueError: Inva...