Isomorphisms between regular graphs of same degree
$begingroup$
Are all $n$-vertex regular graphs of degree $d$ isomorphic?
Can someone provide an example of two non-isomorphic graphs $G_1$ and $G_2$ which are both regular with degree $d$ and have the same number of vertices (i.e., $|G_1| = |G_2|$)?
graph-theory graph-isomorphism
$endgroup$
add a comment |
$begingroup$
Are all $n$-vertex regular graphs of degree $d$ isomorphic?
Can someone provide an example of two non-isomorphic graphs $G_1$ and $G_2$ which are both regular with degree $d$ and have the same number of vertices (i.e., $|G_1| = |G_2|$)?
graph-theory graph-isomorphism
$endgroup$
$begingroup$
Yes indeed, but clearly regular graphs of degree 2 are not isomorphic to regular graphs of degree 3. So I'm asking about regular graphs of the same degree, if they have the same number of vertices, are they necessarily isomorphic?
$endgroup$
– Jim Newton
yesterday
add a comment |
$begingroup$
Are all $n$-vertex regular graphs of degree $d$ isomorphic?
Can someone provide an example of two non-isomorphic graphs $G_1$ and $G_2$ which are both regular with degree $d$ and have the same number of vertices (i.e., $|G_1| = |G_2|$)?
graph-theory graph-isomorphism
$endgroup$
Are all $n$-vertex regular graphs of degree $d$ isomorphic?
Can someone provide an example of two non-isomorphic graphs $G_1$ and $G_2$ which are both regular with degree $d$ and have the same number of vertices (i.e., $|G_1| = |G_2|$)?
graph-theory graph-isomorphism
graph-theory graph-isomorphism
edited yesterday
dkaeae
1,971721
1,971721
asked yesterday
Jim NewtonJim Newton
1107
1107
$begingroup$
Yes indeed, but clearly regular graphs of degree 2 are not isomorphic to regular graphs of degree 3. So I'm asking about regular graphs of the same degree, if they have the same number of vertices, are they necessarily isomorphic?
$endgroup$
– Jim Newton
yesterday
add a comment |
$begingroup$
Yes indeed, but clearly regular graphs of degree 2 are not isomorphic to regular graphs of degree 3. So I'm asking about regular graphs of the same degree, if they have the same number of vertices, are they necessarily isomorphic?
$endgroup$
– Jim Newton
yesterday
$begingroup$
Yes indeed, but clearly regular graphs of degree 2 are not isomorphic to regular graphs of degree 3. So I'm asking about regular graphs of the same degree, if they have the same number of vertices, are they necessarily isomorphic?
$endgroup$
– Jim Newton
yesterday
$begingroup$
Yes indeed, but clearly regular graphs of degree 2 are not isomorphic to regular graphs of degree 3. So I'm asking about regular graphs of the same degree, if they have the same number of vertices, are they necessarily isomorphic?
$endgroup$
– Jim Newton
yesterday
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Playing around with a pencil and paper for a few minutes, it should be easy to come up with non-isomorphic $d$-regular graphs with the same number of vertices, for small $d$. For example, take two cycles of length $2n$ and connect chords across them in different ways.
However, there is a polynomial-time isomorphism algorithm for any class of graphs of bounded degree, which includes the $d$-regular graphs for any fixed $d$. It's due to Luks (Isomorphism of graphs of bounded valence can be tested in polynomial time, Journal of Computer and System Sciences 25(1):42–65, 1982) and uses a bunch of group theory.
$endgroup$
add a comment |
$begingroup$
Of course not.
Consider, for example, the cycle $C_6$ with six vertices and the graph obtained by the union of two copies of $C_3$. Then both are 2-regular, but they are obviously not isomorphic.
This is also the case if we restrict the question to connected graphs. Consider, for instance, the following two 3-regular graphs:
You can see they are not isomorphic because the second one contains cycles with six vertices that have chords; this is impossible in the first graph since it has precisely four six-cycles and you can see none of them have chords. (Or even easier: The second one has a five cycle, whereas the first one has only cycles with three, four, six, or more vertices.)
What you might be able to prove is that all 2-regular and connected graphs are isomorphic (see, e.g., this), but this is a big restriction compared to the original question.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "419"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fcs.stackexchange.com%2fquestions%2f105214%2fisomorphisms-between-regular-graphs-of-same-degree%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Playing around with a pencil and paper for a few minutes, it should be easy to come up with non-isomorphic $d$-regular graphs with the same number of vertices, for small $d$. For example, take two cycles of length $2n$ and connect chords across them in different ways.
However, there is a polynomial-time isomorphism algorithm for any class of graphs of bounded degree, which includes the $d$-regular graphs for any fixed $d$. It's due to Luks (Isomorphism of graphs of bounded valence can be tested in polynomial time, Journal of Computer and System Sciences 25(1):42–65, 1982) and uses a bunch of group theory.
$endgroup$
add a comment |
$begingroup$
Playing around with a pencil and paper for a few minutes, it should be easy to come up with non-isomorphic $d$-regular graphs with the same number of vertices, for small $d$. For example, take two cycles of length $2n$ and connect chords across them in different ways.
However, there is a polynomial-time isomorphism algorithm for any class of graphs of bounded degree, which includes the $d$-regular graphs for any fixed $d$. It's due to Luks (Isomorphism of graphs of bounded valence can be tested in polynomial time, Journal of Computer and System Sciences 25(1):42–65, 1982) and uses a bunch of group theory.
$endgroup$
add a comment |
$begingroup$
Playing around with a pencil and paper for a few minutes, it should be easy to come up with non-isomorphic $d$-regular graphs with the same number of vertices, for small $d$. For example, take two cycles of length $2n$ and connect chords across them in different ways.
However, there is a polynomial-time isomorphism algorithm for any class of graphs of bounded degree, which includes the $d$-regular graphs for any fixed $d$. It's due to Luks (Isomorphism of graphs of bounded valence can be tested in polynomial time, Journal of Computer and System Sciences 25(1):42–65, 1982) and uses a bunch of group theory.
$endgroup$
Playing around with a pencil and paper for a few minutes, it should be easy to come up with non-isomorphic $d$-regular graphs with the same number of vertices, for small $d$. For example, take two cycles of length $2n$ and connect chords across them in different ways.
However, there is a polynomial-time isomorphism algorithm for any class of graphs of bounded degree, which includes the $d$-regular graphs for any fixed $d$. It's due to Luks (Isomorphism of graphs of bounded valence can be tested in polynomial time, Journal of Computer and System Sciences 25(1):42–65, 1982) and uses a bunch of group theory.
answered yesterday
David RicherbyDavid Richerby
67.9k15102193
67.9k15102193
add a comment |
add a comment |
$begingroup$
Of course not.
Consider, for example, the cycle $C_6$ with six vertices and the graph obtained by the union of two copies of $C_3$. Then both are 2-regular, but they are obviously not isomorphic.
This is also the case if we restrict the question to connected graphs. Consider, for instance, the following two 3-regular graphs:
You can see they are not isomorphic because the second one contains cycles with six vertices that have chords; this is impossible in the first graph since it has precisely four six-cycles and you can see none of them have chords. (Or even easier: The second one has a five cycle, whereas the first one has only cycles with three, four, six, or more vertices.)
What you might be able to prove is that all 2-regular and connected graphs are isomorphic (see, e.g., this), but this is a big restriction compared to the original question.
$endgroup$
add a comment |
$begingroup$
Of course not.
Consider, for example, the cycle $C_6$ with six vertices and the graph obtained by the union of two copies of $C_3$. Then both are 2-regular, but they are obviously not isomorphic.
This is also the case if we restrict the question to connected graphs. Consider, for instance, the following two 3-regular graphs:
You can see they are not isomorphic because the second one contains cycles with six vertices that have chords; this is impossible in the first graph since it has precisely four six-cycles and you can see none of them have chords. (Or even easier: The second one has a five cycle, whereas the first one has only cycles with three, four, six, or more vertices.)
What you might be able to prove is that all 2-regular and connected graphs are isomorphic (see, e.g., this), but this is a big restriction compared to the original question.
$endgroup$
add a comment |
$begingroup$
Of course not.
Consider, for example, the cycle $C_6$ with six vertices and the graph obtained by the union of two copies of $C_3$. Then both are 2-regular, but they are obviously not isomorphic.
This is also the case if we restrict the question to connected graphs. Consider, for instance, the following two 3-regular graphs:
You can see they are not isomorphic because the second one contains cycles with six vertices that have chords; this is impossible in the first graph since it has precisely four six-cycles and you can see none of them have chords. (Or even easier: The second one has a five cycle, whereas the first one has only cycles with three, four, six, or more vertices.)
What you might be able to prove is that all 2-regular and connected graphs are isomorphic (see, e.g., this), but this is a big restriction compared to the original question.
$endgroup$
Of course not.
Consider, for example, the cycle $C_6$ with six vertices and the graph obtained by the union of two copies of $C_3$. Then both are 2-regular, but they are obviously not isomorphic.
This is also the case if we restrict the question to connected graphs. Consider, for instance, the following two 3-regular graphs:
You can see they are not isomorphic because the second one contains cycles with six vertices that have chords; this is impossible in the first graph since it has precisely four six-cycles and you can see none of them have chords. (Or even easier: The second one has a five cycle, whereas the first one has only cycles with three, four, six, or more vertices.)
What you might be able to prove is that all 2-regular and connected graphs are isomorphic (see, e.g., this), but this is a big restriction compared to the original question.
edited yesterday
answered yesterday
dkaeaedkaeae
1,971721
1,971721
add a comment |
add a comment |
Thanks for contributing an answer to Computer Science Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fcs.stackexchange.com%2fquestions%2f105214%2fisomorphisms-between-regular-graphs-of-same-degree%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Yes indeed, but clearly regular graphs of degree 2 are not isomorphic to regular graphs of degree 3. So I'm asking about regular graphs of the same degree, if they have the same number of vertices, are they necessarily isomorphic?
$endgroup$
– Jim Newton
yesterday