Hollandia Septentrionalis

Multi tool use
Provincie Noord-Holland
Provincia Hollandia Septentrionalis

|

|
(Vexillum)
|
(Insigne)
|
|

|
Caput
|
Harlemum
|
Commissarius regalis
|
Johan Remkes (VVD)
|
Religio (2005 [1])
|
Catholici Romani 18 % Musulmani 8 % Protestantes 8% Hinduistae 1%
|
Area - Terra - Aqua
|
6 2670 km² 1421 km²
|
Numerus incolarum - totus - spissitudo incolarum - Numerus communium
|
2 2 595 294(1 Ianuarii 2005) 972 inc./km² 61
|
Coordinata geographica
|
52°22' Lat. 4°38' Long. orent.
|
Hymnus popularis
|
Ik houd van het groen in je wei
|
Pagina interretialis
|
www.noordholland.nl
|
Status provinciales
|
Numerus delegatorum VVD PvdA CDA SP GroenLinks D66 PvdD ChristenUnie/SGP
Ouderen NH/VSP
|
55 13 11 10 9 5 2 2 2 1
|

|

Partes factionum anno 2007
Hollandia Septentrionalis est provincia civitatis Nederlandiae. Amstelodamum, caput Nederlandiae, situm est in Hollandia Septentrionali.
Oppida et vici |
- Haarlemmermeer
- Zuidermeer
Notae |
↑ Geloven in het publieke domein. Verkenningen van een dubbele transformatie (W.B.H.J. van de Donk, A.P. Jonkers, G.J. Kronjee en R.J.J.M. Plum, red.), mense decembri 2006, ISBN 90-5356-936-7
Nexus externi |

|
Vicimedia Communia plura habent quae ad Hollandiam Septentrionalem spectant.
|
Pagina interretialis officialis .mw-parser-output .existinglinksgray a,.mw-parser-output .existinglinksgray a:visited{color:gray}.mw-parser-output .existinglinksgray a.new{color:#ba0000}.mw-parser-output .existinglinksgray a.new:visited{color:#a55858}
(Batave)
Provinciae Nederlandicae
|
|
Frisia · Groninga · Drenthia · Transisalania · Geldria · Brabantia Septentrionalis · Limburgum · Zelandia · Traiectum ad Rhenum · Hollandia Septentrionalis · Hollandia Australis · Flevolandia
|
|
.mw-parser-output .stipula{padding:3px;background:#F7F8FF;border:1px solid grey;margin:auto}.mw-parser-output .stipula td.cell1{background:transparent;color:white}

|
Haec stipula ad geographiam spectat. Amplifica, si potes!
|
ckV7sB0W63 kRF RA,K cxgb5B0e5KwS4z3pSL
Popular posts from this blog
Tabula multilinguis Rosettana in Museo Britannico ostenditur. Tabula Rosettana, [1] etiam titulo OGIS 90 agnita, est stela decreto de rebus sacris in Aegypto anno 196 a.C.n. lato inscripta. Tabula iuxta Rosettam Aegypti, urbem in delta Nili et ad oram maris Mediterranei iacentem, anno 1799 a milite Francico reperta est. Inventio stelae, linguis duabus scripturisque tribus inscriptae, eruditis Instituti Aegypti statim nuntiata est; ibi enim iussu imperatoris Napoleonis eruditi omnium scientiarum (sub aegide Commissionis Scientiarum et Artium) properaverant cum expeditione Francica. Qua a Britannis mox debellata, tabula Rosettana Londinium missa hodie apud Museum Britannicum iacet. Textus Graecus cito lectus interpretationi textuum Aegyptiorum (in formis hieroglyphica et demotica expressorum) gradatim adiuvit. Denique textum plene interpretatus est Ioannes Franciscus Champollion. Ab opere eruditorum cumulativo coepit hodiernus scripturae hieroglyphicae linguaeque Aegyptiae a...
1
$begingroup$
This is what I mean as document text image: I want to label the texts in image as separate blocks and my model should detect these labels as classes. NOTE: This is how the end result should be like: The labels like Block 1, Block 2, Block 3,.. should be Logo, Title, Date,.. Others, etc. Work done: First approach : I tried to implement this method via Object Detection, it didn't work. It didn't even detect any text. Second approach : Then I tried it using PixelLink. As this model is build for scene text detection, it detected each and every text in the image. But this method can detect multiple lines of text if the threshold values are increased. But I have no idea how do I add labels to the text blocks. PIXEL_CLS_WEIGHT_all_ones = 'PIXEL_CLS_WEIGHT_all_ones' PIXEL_C...
1
$begingroup$
I have this LSTM model model = Sequential() model.add(Masking(mask_value=0, input_shape=(timesteps, features))) model.add(LSTM(100, dropout=0.2, recurrent_dropout=0.2, return_sequences=False)) model.add(Dense(features, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) and shapes X_train (21, 11, 5), y_train (21, 5) . Each timestep is represented by 5 features and return_sequences is set to False because I want to predict one 5D array (the next timestep) for each input sequence of 11 timesteps. I get the error ValueError: y_true and y_pred have different number of output (5!=1) If I reshape the data as X_train (21, 11, 5), y_train (21, 1, 5) instead I get the error ValueError: Inva...