Vide etiam paginam discretivam: Capistranum (Bruttium)
Capistranum
Capestrano
Imago Capistrani
Nomina Latina alia:
Capestranum
Administratio
Terra:
Italia
Regio:
Aprutium
Provincia:
Aquilana
Indicia fundamentalia
Coordinata:
° ′ ″ Sept., ° ′ ″ Ort.
Res aliae
Zona temporalis:
UTC+1
Nota autocineti:
AQ
Charta
Pagina interretialis
Capistranum[1][2] (-i, n.) (alia nomina: Capestranum, Capistranus[1]) (Italiane: Capestrano) est oppidum Italiae et Municipium, in Regione Aprutio et in Provincia Aquilana situm.
Index
1Insigne
1.1Sententia
2Urbis administratio
3Geographia
4Oeconomia
5Historia
6Clari cives
7Fractiones
8Municipia finitima
9Nexus interni
10Nexus externi
11Pinacotheca
12Notae
Insigne |
Municipium Italiae
Sententia |
Urbis administratio |
Geographia |
Oeconomia |
Historia |
Clari cives |
Fractiones |
Municipia finitima |
Nexus interni
Aprutium,
Provincia Aquilana,
Aquila (urbs),
Municipium Italiae.
Nexus externi |
Situs Publicus .mw-parser-output .existinglinksgray a,.mw-parser-output .existinglinksgray a:visited{color:gray}.mw-parser-output .existinglinksgray a.new{color:#ba0000}.mw-parser-output .existinglinksgray a.new:visited{color:#a55858} (Italiane)
Vicimedia Communia plura habent quae ad Capistranum spectant.
Pinacotheca |
Collocatio finium Municipii in Provincia Aquilana.
Notae |
↑ 1.01.1L. Giustiniani, Dizionario geografico-ragionato del Regno di Napoli (Neapolis: Vincenzo Manfredi, 1797)
↑F. Sacco, Dizionario geografico-istorico-fisico del Regno di Napoli (Neapolis: Vincenzo Flauto, 1796) Tomo I Tomo II Tomo III Tomo IV
Tabula multilinguis Rosettana in Museo Britannico ostenditur. Tabula Rosettana, [1] etiam titulo OGIS 90 agnita, est stela decreto de rebus sacris in Aegypto anno 196 a.C.n. lato inscripta. Tabula iuxta Rosettam Aegypti, urbem in delta Nili et ad oram maris Mediterranei iacentem, anno 1799 a milite Francico reperta est. Inventio stelae, linguis duabus scripturisque tribus inscriptae, eruditis Instituti Aegypti statim nuntiata est; ibi enim iussu imperatoris Napoleonis eruditi omnium scientiarum (sub aegide Commissionis Scientiarum et Artium) properaverant cum expeditione Francica. Qua a Britannis mox debellata, tabula Rosettana Londinium missa hodie apud Museum Britannicum iacet. Textus Graecus cito lectus interpretationi textuum Aegyptiorum (in formis hieroglyphica et demotica expressorum) gradatim adiuvit. Denique textum plene interpretatus est Ioannes Franciscus Champollion. Ab opere eruditorum cumulativo coepit hodiernus scripturae hieroglyphicae linguaeque Aegyptiae a...
1
$begingroup$
This is what I mean as document text image: I want to label the texts in image as separate blocks and my model should detect these labels as classes. NOTE: This is how the end result should be like: The labels like Block 1, Block 2, Block 3,.. should be Logo, Title, Date,.. Others, etc. Work done: First approach : I tried to implement this method via Object Detection, it didn't work. It didn't even detect any text. Second approach : Then I tried it using PixelLink. As this model is build for scene text detection, it detected each and every text in the image. But this method can detect multiple lines of text if the threshold values are increased. But I have no idea how do I add labels to the text blocks. PIXEL_CLS_WEIGHT_all_ones = 'PIXEL_CLS_WEIGHT_all_ones' PIXEL_C...
1
$begingroup$
I have this LSTM model model = Sequential() model.add(Masking(mask_value=0, input_shape=(timesteps, features))) model.add(LSTM(100, dropout=0.2, recurrent_dropout=0.2, return_sequences=False)) model.add(Dense(features, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) and shapes X_train (21, 11, 5), y_train (21, 5) . Each timestep is represented by 5 features and return_sequences is set to False because I want to predict one 5D array (the next timestep) for each input sequence of 11 timesteps. I get the error ValueError: y_true and y_pred have different number of output (5!=1) If I reshape the data as X_train (21, 11, 5), y_train (21, 1, 5) instead I get the error ValueError: Inva...