Grid search model isn't recognized as fitted for Graphviz












1












$begingroup$


I find this really weird, and the code is really straight forward.
What am I doing wrong ?



from sklearn.model_selection import GridSearchCV
scoring_type="accuracy"
preprocess_data(X,y,0)
p_grid = {'min_samples_split':np.arange(2,10),'min_samples_leaf': np.arange(1,10)}
Tree_opt = GridSearchCV(estimator=DecisionTreeClassifier(random_state=42), param_grid=p_grid, scoring=scoring_type, cv=10)
Tree_opt.fit(X_train,y_train)

print("Best training params: {}".format(Tree_opt.best_params_))
print("Best training Score: {}".format(Tree_opt.best_score_))
dot_data = tree.export_graphviz(Tree_opt, out_file=None,feature_names=labels,class_names=class_names,filled=True, rounded=True,special_characters=True)
graph = graphviz.Source(dot_data)

graph
print(Tree_opt.score(X_test, y_test))


And I'm getting the following error:



NotFittedError                            Traceback (most recent call last)
<ipython-input-14-1c7fa906f99b> in <module>
8 print("Best training params: {}".format(Tree_opt.best_params_))
9 print("Best training Score: {}".format(Tree_opt.best_score_))
---> 10 dot_data = tree.export_graphviz(Tree_opt, out_file=None,feature_names=labels,class_names=class_names,filled=True, rounded=True,special_characters=True)
11 graph = graphviz.Source(dot_data)
12

~Anaconda3libsite-packagessklearntreeexport.py in export_graphviz(decision_tree, out_file, max_depth, feature_names, class_names, label, filled, leaves_parallel, impurity, node_ids, proportion, rotate, rounded, special_characters, precision)
394 out_file.write('%d -> %d ;n' % (parent, node_id))
395
--> 396 check_is_fitted(decision_tree, 'tree_')
397 own_file = False
398 return_string = False

~Anaconda3libsite-packagessklearnutilsvalidation.py in check_is_fitted(estimator, attributes, msg, all_or_any)
949
950 if not all_or_any([hasattr(estimator, attr) for attr in attributes]):
--> 951 raise NotFittedError(msg % {'name': type(estimator).__name__})
952
953

NotFittedError: This GridSearchCV instance is not fitted yet. Call 'fit' with appropriate arguments before using this method.


I also have this warning I don't think it's important:



C:UsersFlowAnaconda3libsite-packagessklearnmodel_selection_search.py:841: DeprecationWarning: The default of the `iid` parameter will change from True to False in version 0.22 and will be removed in 0.24. This will change numeric results when test-set sizes are unequal.
DeprecationWarning)


I think the fit works because I can get the first prints as follows:



Best training params: {'min_samples_leaf': 3, 'min_samples_split': 2}
Best training Score: 0.8809523809523809









share|improve this question







New contributor




Florian Laborde is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$

















    1












    $begingroup$


    I find this really weird, and the code is really straight forward.
    What am I doing wrong ?



    from sklearn.model_selection import GridSearchCV
    scoring_type="accuracy"
    preprocess_data(X,y,0)
    p_grid = {'min_samples_split':np.arange(2,10),'min_samples_leaf': np.arange(1,10)}
    Tree_opt = GridSearchCV(estimator=DecisionTreeClassifier(random_state=42), param_grid=p_grid, scoring=scoring_type, cv=10)
    Tree_opt.fit(X_train,y_train)

    print("Best training params: {}".format(Tree_opt.best_params_))
    print("Best training Score: {}".format(Tree_opt.best_score_))
    dot_data = tree.export_graphviz(Tree_opt, out_file=None,feature_names=labels,class_names=class_names,filled=True, rounded=True,special_characters=True)
    graph = graphviz.Source(dot_data)

    graph
    print(Tree_opt.score(X_test, y_test))


    And I'm getting the following error:



    NotFittedError                            Traceback (most recent call last)
    <ipython-input-14-1c7fa906f99b> in <module>
    8 print("Best training params: {}".format(Tree_opt.best_params_))
    9 print("Best training Score: {}".format(Tree_opt.best_score_))
    ---> 10 dot_data = tree.export_graphviz(Tree_opt, out_file=None,feature_names=labels,class_names=class_names,filled=True, rounded=True,special_characters=True)
    11 graph = graphviz.Source(dot_data)
    12

    ~Anaconda3libsite-packagessklearntreeexport.py in export_graphviz(decision_tree, out_file, max_depth, feature_names, class_names, label, filled, leaves_parallel, impurity, node_ids, proportion, rotate, rounded, special_characters, precision)
    394 out_file.write('%d -> %d ;n' % (parent, node_id))
    395
    --> 396 check_is_fitted(decision_tree, 'tree_')
    397 own_file = False
    398 return_string = False

    ~Anaconda3libsite-packagessklearnutilsvalidation.py in check_is_fitted(estimator, attributes, msg, all_or_any)
    949
    950 if not all_or_any([hasattr(estimator, attr) for attr in attributes]):
    --> 951 raise NotFittedError(msg % {'name': type(estimator).__name__})
    952
    953

    NotFittedError: This GridSearchCV instance is not fitted yet. Call 'fit' with appropriate arguments before using this method.


    I also have this warning I don't think it's important:



    C:UsersFlowAnaconda3libsite-packagessklearnmodel_selection_search.py:841: DeprecationWarning: The default of the `iid` parameter will change from True to False in version 0.22 and will be removed in 0.24. This will change numeric results when test-set sizes are unequal.
    DeprecationWarning)


    I think the fit works because I can get the first prints as follows:



    Best training params: {'min_samples_leaf': 3, 'min_samples_split': 2}
    Best training Score: 0.8809523809523809









    share|improve this question







    New contributor




    Florian Laborde is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
    Check out our Code of Conduct.







    $endgroup$















      1












      1








      1





      $begingroup$


      I find this really weird, and the code is really straight forward.
      What am I doing wrong ?



      from sklearn.model_selection import GridSearchCV
      scoring_type="accuracy"
      preprocess_data(X,y,0)
      p_grid = {'min_samples_split':np.arange(2,10),'min_samples_leaf': np.arange(1,10)}
      Tree_opt = GridSearchCV(estimator=DecisionTreeClassifier(random_state=42), param_grid=p_grid, scoring=scoring_type, cv=10)
      Tree_opt.fit(X_train,y_train)

      print("Best training params: {}".format(Tree_opt.best_params_))
      print("Best training Score: {}".format(Tree_opt.best_score_))
      dot_data = tree.export_graphviz(Tree_opt, out_file=None,feature_names=labels,class_names=class_names,filled=True, rounded=True,special_characters=True)
      graph = graphviz.Source(dot_data)

      graph
      print(Tree_opt.score(X_test, y_test))


      And I'm getting the following error:



      NotFittedError                            Traceback (most recent call last)
      <ipython-input-14-1c7fa906f99b> in <module>
      8 print("Best training params: {}".format(Tree_opt.best_params_))
      9 print("Best training Score: {}".format(Tree_opt.best_score_))
      ---> 10 dot_data = tree.export_graphviz(Tree_opt, out_file=None,feature_names=labels,class_names=class_names,filled=True, rounded=True,special_characters=True)
      11 graph = graphviz.Source(dot_data)
      12

      ~Anaconda3libsite-packagessklearntreeexport.py in export_graphviz(decision_tree, out_file, max_depth, feature_names, class_names, label, filled, leaves_parallel, impurity, node_ids, proportion, rotate, rounded, special_characters, precision)
      394 out_file.write('%d -> %d ;n' % (parent, node_id))
      395
      --> 396 check_is_fitted(decision_tree, 'tree_')
      397 own_file = False
      398 return_string = False

      ~Anaconda3libsite-packagessklearnutilsvalidation.py in check_is_fitted(estimator, attributes, msg, all_or_any)
      949
      950 if not all_or_any([hasattr(estimator, attr) for attr in attributes]):
      --> 951 raise NotFittedError(msg % {'name': type(estimator).__name__})
      952
      953

      NotFittedError: This GridSearchCV instance is not fitted yet. Call 'fit' with appropriate arguments before using this method.


      I also have this warning I don't think it's important:



      C:UsersFlowAnaconda3libsite-packagessklearnmodel_selection_search.py:841: DeprecationWarning: The default of the `iid` parameter will change from True to False in version 0.22 and will be removed in 0.24. This will change numeric results when test-set sizes are unequal.
      DeprecationWarning)


      I think the fit works because I can get the first prints as follows:



      Best training params: {'min_samples_leaf': 3, 'min_samples_split': 2}
      Best training Score: 0.8809523809523809









      share|improve this question







      New contributor




      Florian Laborde is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.







      $endgroup$




      I find this really weird, and the code is really straight forward.
      What am I doing wrong ?



      from sklearn.model_selection import GridSearchCV
      scoring_type="accuracy"
      preprocess_data(X,y,0)
      p_grid = {'min_samples_split':np.arange(2,10),'min_samples_leaf': np.arange(1,10)}
      Tree_opt = GridSearchCV(estimator=DecisionTreeClassifier(random_state=42), param_grid=p_grid, scoring=scoring_type, cv=10)
      Tree_opt.fit(X_train,y_train)

      print("Best training params: {}".format(Tree_opt.best_params_))
      print("Best training Score: {}".format(Tree_opt.best_score_))
      dot_data = tree.export_graphviz(Tree_opt, out_file=None,feature_names=labels,class_names=class_names,filled=True, rounded=True,special_characters=True)
      graph = graphviz.Source(dot_data)

      graph
      print(Tree_opt.score(X_test, y_test))


      And I'm getting the following error:



      NotFittedError                            Traceback (most recent call last)
      <ipython-input-14-1c7fa906f99b> in <module>
      8 print("Best training params: {}".format(Tree_opt.best_params_))
      9 print("Best training Score: {}".format(Tree_opt.best_score_))
      ---> 10 dot_data = tree.export_graphviz(Tree_opt, out_file=None,feature_names=labels,class_names=class_names,filled=True, rounded=True,special_characters=True)
      11 graph = graphviz.Source(dot_data)
      12

      ~Anaconda3libsite-packagessklearntreeexport.py in export_graphviz(decision_tree, out_file, max_depth, feature_names, class_names, label, filled, leaves_parallel, impurity, node_ids, proportion, rotate, rounded, special_characters, precision)
      394 out_file.write('%d -> %d ;n' % (parent, node_id))
      395
      --> 396 check_is_fitted(decision_tree, 'tree_')
      397 own_file = False
      398 return_string = False

      ~Anaconda3libsite-packagessklearnutilsvalidation.py in check_is_fitted(estimator, attributes, msg, all_or_any)
      949
      950 if not all_or_any([hasattr(estimator, attr) for attr in attributes]):
      --> 951 raise NotFittedError(msg % {'name': type(estimator).__name__})
      952
      953

      NotFittedError: This GridSearchCV instance is not fitted yet. Call 'fit' with appropriate arguments before using this method.


      I also have this warning I don't think it's important:



      C:UsersFlowAnaconda3libsite-packagessklearnmodel_selection_search.py:841: DeprecationWarning: The default of the `iid` parameter will change from True to False in version 0.22 and will be removed in 0.24. This will change numeric results when test-set sizes are unequal.
      DeprecationWarning)


      I think the fit works because I can get the first prints as follows:



      Best training params: {'min_samples_leaf': 3, 'min_samples_split': 2}
      Best training Score: 0.8809523809523809






      decision-trees graphs grid-search gridsearchcv






      share|improve this question







      New contributor




      Florian Laborde is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.











      share|improve this question







      New contributor




      Florian Laborde is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.









      share|improve this question




      share|improve this question






      New contributor




      Florian Laborde is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.









      asked 2 days ago









      Florian LabordeFlorian Laborde

      152




      152




      New contributor




      Florian Laborde is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.





      New contributor





      Florian Laborde is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.






      Florian Laborde is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.






















          2 Answers
          2






          active

          oldest

          votes


















          0












          $begingroup$

          Try using Tree_opt.best_estimator_. The grid search object passes fit and score functions through to the best estimator when refit=True, but other (esp. more specific) methods need to be called directly from best estimator object.






          share|improve this answer









          $endgroup$













          • $begingroup$
            Thanks ! the following code did great.
            $endgroup$
            – Florian Laborde
            yesterday



















          0












          $begingroup$

          Here is the modified correct code :



          from sklearn.model_selection import GridSearchCV
          scoring_type="accuracy"
          preprocess_data(X,y,0)
          p_grid = {'min_samples_split':np.arange(2,10),'min_samples_leaf': np.arange(1,10)}
          Tree_opt = GridSearchCV(estimator=DecisionTreeClassifier(random_state=42), param_grid=p_grid, scoring=scoring_type, cv=10, refit=True)
          Tree_opt.fit(X_train,y_train)


          print("Best training params: {}".format(Tree_opt.best_params_))
          print("Best training Score: {}".format(Tree_opt.best_score_))
          print("Best training Score: {}".format(Tree_opt.best_estimator_))
          Tree_opt.best_estimator_.fit(X_train, y_train)
          dot_data = tree.export_graphviz(Tree_opt.best_estimator_, out_file=None,feature_names=labels,class_names=class_names,filled=True, rounded=True,special_characters=True)
          graph = graphviz.Source(dot_data)

          graph


          Indeed we need to call on .best_estimator_ instance






          share|improve this answer








          New contributor




          Florian Laborde is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
          Check out our Code of Conduct.






          $endgroup$













            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "557"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: false,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: null,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });






            Florian Laborde is a new contributor. Be nice, and check out our Code of Conduct.










            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f47046%2fgrid-search-model-isnt-recognized-as-fitted-for-graphviz%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            2 Answers
            2






            active

            oldest

            votes








            2 Answers
            2






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            0












            $begingroup$

            Try using Tree_opt.best_estimator_. The grid search object passes fit and score functions through to the best estimator when refit=True, but other (esp. more specific) methods need to be called directly from best estimator object.






            share|improve this answer









            $endgroup$













            • $begingroup$
              Thanks ! the following code did great.
              $endgroup$
              – Florian Laborde
              yesterday
















            0












            $begingroup$

            Try using Tree_opt.best_estimator_. The grid search object passes fit and score functions through to the best estimator when refit=True, but other (esp. more specific) methods need to be called directly from best estimator object.






            share|improve this answer









            $endgroup$













            • $begingroup$
              Thanks ! the following code did great.
              $endgroup$
              – Florian Laborde
              yesterday














            0












            0








            0





            $begingroup$

            Try using Tree_opt.best_estimator_. The grid search object passes fit and score functions through to the best estimator when refit=True, but other (esp. more specific) methods need to be called directly from best estimator object.






            share|improve this answer









            $endgroup$



            Try using Tree_opt.best_estimator_. The grid search object passes fit and score functions through to the best estimator when refit=True, but other (esp. more specific) methods need to be called directly from best estimator object.







            share|improve this answer












            share|improve this answer



            share|improve this answer










            answered 2 days ago









            Ben ReinigerBen Reiniger

            18419




            18419












            • $begingroup$
              Thanks ! the following code did great.
              $endgroup$
              – Florian Laborde
              yesterday


















            • $begingroup$
              Thanks ! the following code did great.
              $endgroup$
              – Florian Laborde
              yesterday
















            $begingroup$
            Thanks ! the following code did great.
            $endgroup$
            – Florian Laborde
            yesterday




            $begingroup$
            Thanks ! the following code did great.
            $endgroup$
            – Florian Laborde
            yesterday











            0












            $begingroup$

            Here is the modified correct code :



            from sklearn.model_selection import GridSearchCV
            scoring_type="accuracy"
            preprocess_data(X,y,0)
            p_grid = {'min_samples_split':np.arange(2,10),'min_samples_leaf': np.arange(1,10)}
            Tree_opt = GridSearchCV(estimator=DecisionTreeClassifier(random_state=42), param_grid=p_grid, scoring=scoring_type, cv=10, refit=True)
            Tree_opt.fit(X_train,y_train)


            print("Best training params: {}".format(Tree_opt.best_params_))
            print("Best training Score: {}".format(Tree_opt.best_score_))
            print("Best training Score: {}".format(Tree_opt.best_estimator_))
            Tree_opt.best_estimator_.fit(X_train, y_train)
            dot_data = tree.export_graphviz(Tree_opt.best_estimator_, out_file=None,feature_names=labels,class_names=class_names,filled=True, rounded=True,special_characters=True)
            graph = graphviz.Source(dot_data)

            graph


            Indeed we need to call on .best_estimator_ instance






            share|improve this answer








            New contributor




            Florian Laborde is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
            Check out our Code of Conduct.






            $endgroup$


















              0












              $begingroup$

              Here is the modified correct code :



              from sklearn.model_selection import GridSearchCV
              scoring_type="accuracy"
              preprocess_data(X,y,0)
              p_grid = {'min_samples_split':np.arange(2,10),'min_samples_leaf': np.arange(1,10)}
              Tree_opt = GridSearchCV(estimator=DecisionTreeClassifier(random_state=42), param_grid=p_grid, scoring=scoring_type, cv=10, refit=True)
              Tree_opt.fit(X_train,y_train)


              print("Best training params: {}".format(Tree_opt.best_params_))
              print("Best training Score: {}".format(Tree_opt.best_score_))
              print("Best training Score: {}".format(Tree_opt.best_estimator_))
              Tree_opt.best_estimator_.fit(X_train, y_train)
              dot_data = tree.export_graphviz(Tree_opt.best_estimator_, out_file=None,feature_names=labels,class_names=class_names,filled=True, rounded=True,special_characters=True)
              graph = graphviz.Source(dot_data)

              graph


              Indeed we need to call on .best_estimator_ instance






              share|improve this answer








              New contributor




              Florian Laborde is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
              Check out our Code of Conduct.






              $endgroup$
















                0












                0








                0





                $begingroup$

                Here is the modified correct code :



                from sklearn.model_selection import GridSearchCV
                scoring_type="accuracy"
                preprocess_data(X,y,0)
                p_grid = {'min_samples_split':np.arange(2,10),'min_samples_leaf': np.arange(1,10)}
                Tree_opt = GridSearchCV(estimator=DecisionTreeClassifier(random_state=42), param_grid=p_grid, scoring=scoring_type, cv=10, refit=True)
                Tree_opt.fit(X_train,y_train)


                print("Best training params: {}".format(Tree_opt.best_params_))
                print("Best training Score: {}".format(Tree_opt.best_score_))
                print("Best training Score: {}".format(Tree_opt.best_estimator_))
                Tree_opt.best_estimator_.fit(X_train, y_train)
                dot_data = tree.export_graphviz(Tree_opt.best_estimator_, out_file=None,feature_names=labels,class_names=class_names,filled=True, rounded=True,special_characters=True)
                graph = graphviz.Source(dot_data)

                graph


                Indeed we need to call on .best_estimator_ instance






                share|improve this answer








                New contributor




                Florian Laborde is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                Check out our Code of Conduct.






                $endgroup$



                Here is the modified correct code :



                from sklearn.model_selection import GridSearchCV
                scoring_type="accuracy"
                preprocess_data(X,y,0)
                p_grid = {'min_samples_split':np.arange(2,10),'min_samples_leaf': np.arange(1,10)}
                Tree_opt = GridSearchCV(estimator=DecisionTreeClassifier(random_state=42), param_grid=p_grid, scoring=scoring_type, cv=10, refit=True)
                Tree_opt.fit(X_train,y_train)


                print("Best training params: {}".format(Tree_opt.best_params_))
                print("Best training Score: {}".format(Tree_opt.best_score_))
                print("Best training Score: {}".format(Tree_opt.best_estimator_))
                Tree_opt.best_estimator_.fit(X_train, y_train)
                dot_data = tree.export_graphviz(Tree_opt.best_estimator_, out_file=None,feature_names=labels,class_names=class_names,filled=True, rounded=True,special_characters=True)
                graph = graphviz.Source(dot_data)

                graph


                Indeed we need to call on .best_estimator_ instance







                share|improve this answer








                New contributor




                Florian Laborde is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                Check out our Code of Conduct.









                share|improve this answer



                share|improve this answer






                New contributor




                Florian Laborde is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                Check out our Code of Conduct.









                answered yesterday









                Florian LabordeFlorian Laborde

                152




                152




                New contributor




                Florian Laborde is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                Check out our Code of Conduct.





                New contributor





                Florian Laborde is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                Check out our Code of Conduct.






                Florian Laborde is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                Check out our Code of Conduct.






















                    Florian Laborde is a new contributor. Be nice, and check out our Code of Conduct.










                    draft saved

                    draft discarded


















                    Florian Laborde is a new contributor. Be nice, and check out our Code of Conduct.













                    Florian Laborde is a new contributor. Be nice, and check out our Code of Conduct.












                    Florian Laborde is a new contributor. Be nice, and check out our Code of Conduct.
















                    Thanks for contributing an answer to Data Science Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f47046%2fgrid-search-model-isnt-recognized-as-fitted-for-graphviz%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    How to label and detect the document text images

                    Tabula Rosettana

                    Aureus (color)