Woden

Multi tool use

Woden Equum Balderanum Curat, pictura Aemilii Doepler (1855–1922).

Fibula Nordendorfensis II.

Woden progenies Ælfwald Angliae Orientalis in
Textu Roffensi (saeculum 12) perscribitur. Vide versum ultimum.
Woden vel Wodan (lingua Anglica antiqua Ƿōden,[1]lingua Theodisca alta antiqua Wôdan,[2]lingua Saxonica antiqua Uuôden[3]) est maior deitas Anglosaxonica et Germanica continentalis. Qui, cum Odin, eius pari Nordico,[4] progressum *Wōđanaz, dei Protogermanici, repraesentat. Ex eo appellatur Wednesday, dies Anglicus pro die Mercurii.
Nexus interni
- Christianitas Germanica
- Paganismus Anglosaxonicus
- Polytheismus Anglosaxonicus
Notae |
↑ David Wilson, Anglo-Saxon Paganism (Routledge, 1992, ISBN 978-0-415-01897-5), 11.
↑ Brian Murdoch, ed., German Literature of the Early Middle Ages (Camden House Publishing, 2004, ISBN 978-1-57113-240-6), 62.
↑ Edward Turville-Petre, Myth and Religion of the North: The Religion of Ancient Scandinavia (Greenwood Press, 1975, ISBN 978-0-8371-7420-4), 100.
↑ Ellis Davidson, Myths and Symbols in Pagan Europe: Early Scandinavian and Celtic Religions (Manchester University Press, 1989, 978-0-7190-2579-2), 1.
Bibliographia |
- Branston, Brian. 1974. The Lost Gods of England. Ed. 2a. Londinii: Thames and Hudson. ISBN 0-500-11013-1.
- Herbert, Kathleen. 1995. Looking for the Lost Gods of England. Anglo-Saxon Books. ISBN 1-898281-04-1.
- Pettit, E. 2001. Anglo-Saxon Remedies, Charms, and Prayers from British Library MS Harley 585: The 'Lacnunga.' 2 vol. Edwin Mellen Press.
- Stanley, E. G. 2000. Imagining the Anglo-Saxon Past: The Search for Anglo-Saxon Paganism and Anglo-Saxon Trial by Jury. D. S. Brewer. ISBN 0-85991-588-3.
- Wood, Michael. 2001. In Search of the Dark Ages. Checkmark Books. ISBN 0-8160-4702-2.
- Walter Keating Kelly. 1863. Curiosities of Indo-European Tradition and Folk-lore. Londinii: Chapman &, 266–291.
mw1fDqR jPLdHZQ,Ol13,5obk0j15,VDOPHs04Qu2W99doF,hXS74tKMYJVOh8Sp Ld,FXjlYMnfNagpXKiSiaEqNclj74ieKtXol E
Popular posts from this blog
Tabula multilinguis Rosettana in Museo Britannico ostenditur. Tabula Rosettana, [1] etiam titulo OGIS 90 agnita, est stela decreto de rebus sacris in Aegypto anno 196 a.C.n. lato inscripta. Tabula iuxta Rosettam Aegypti, urbem in delta Nili et ad oram maris Mediterranei iacentem, anno 1799 a milite Francico reperta est. Inventio stelae, linguis duabus scripturisque tribus inscriptae, eruditis Instituti Aegypti statim nuntiata est; ibi enim iussu imperatoris Napoleonis eruditi omnium scientiarum (sub aegide Commissionis Scientiarum et Artium) properaverant cum expeditione Francica. Qua a Britannis mox debellata, tabula Rosettana Londinium missa hodie apud Museum Britannicum iacet. Textus Graecus cito lectus interpretationi textuum Aegyptiorum (in formis hieroglyphica et demotica expressorum) gradatim adiuvit. Denique textum plene interpretatus est Ioannes Franciscus Champollion. Ab opere eruditorum cumulativo coepit hodiernus scripturae hieroglyphicae linguaeque Aegyptiae a...
1
$begingroup$
This is what I mean as document text image: I want to label the texts in image as separate blocks and my model should detect these labels as classes. NOTE: This is how the end result should be like: The labels like Block 1, Block 2, Block 3,.. should be Logo, Title, Date,.. Others, etc. Work done: First approach : I tried to implement this method via Object Detection, it didn't work. It didn't even detect any text. Second approach : Then I tried it using PixelLink. As this model is build for scene text detection, it detected each and every text in the image. But this method can detect multiple lines of text if the threshold values are increased. But I have no idea how do I add labels to the text blocks. PIXEL_CLS_WEIGHT_all_ones = 'PIXEL_CLS_WEIGHT_all_ones' PIXEL_C...
1
$begingroup$
I have this LSTM model model = Sequential() model.add(Masking(mask_value=0, input_shape=(timesteps, features))) model.add(LSTM(100, dropout=0.2, recurrent_dropout=0.2, return_sequences=False)) model.add(Dense(features, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) and shapes X_train (21, 11, 5), y_train (21, 5) . Each timestep is represented by 5 features and return_sequences is set to False because I want to predict one 5D array (the next timestep) for each input sequence of 11 timesteps. I get the error ValueError: y_true and y_pred have different number of output (5!=1) If I reshape the data as X_train (21, 11, 5), y_train (21, 1, 5) instead I get the error ValueError: Inva...