Civitatum Foederatarum Secretarius Civitatis

Multi tool use

-2
Latinitas huius rei dubia est. Corrige si potes. Vide {{latinitas}}.
Civitatum Foederatarum Secretarius Civitatis est Civitatum Foederatarum Americae senior officialis gubernationis eius, moderator ministerii rerum externarum.[1]
Secretarius Civitatis primo praeside nominatus, deinde curatione auditus, prostremo Senatu confirmatus.
Notae |
↑ Situs interretialis ministeriorum rerum externarum Nationum Unitarum
Nexus externi |
Situs interretialis officialis ministerii rerum externarum
Secretarii civici Civitatum Foederatarum
|
|
Robertus Livingston • Ioannes Jay • Thomas Jefferson • Edmundus Randolph • Timotheus Pickering • Ioannes Marshall • Iacobus Madison • Robertus Smith • Iacobus Monroe • Ioannes Quintius Adams • Henricus Clay • Martinus Van Buren • Eduardus Livingston • Ludovicus McLane • Ioannes Forsyth • Daniel Webster • Abel Upshur • Ioannes Calhoun • Iacobus Buchanan • Ioannes Clayton • Daniel Webster • Eduardus Everett • Gulielmus Marcy • Ludovicus Cass • Ieremias Black • Gulielmus Seward • Elihu Washburne • Hamilton Fish • Gulielmus Evarts • Iacobus Blaine • Fridericus Frelinghuysen • Thomas Bayard • Iacobus Blaine • Ioannes Foster • Gualter Gresham • Ricardus Olney • Ioannes Sherman • Gulielmus Day • Ioannes Hay • Elihu Root • Robertus Bacon • Philander Knox • Gulielmus Bryan • Robertus Lansing • Bainbridge Colby • Carolus Evans Hughes • Franciscus Kellogg • Henricus Stimson • Cordell Hull • Eduardus Stettinius • Iacobus Byrnes • Georgius Marshall • Dean Acheson • Ioannes Foster Dulles • Christianus Herter • Dean Rusk • Gulielmus Rogers • Henricus Kissinger • Cyrus Vance • Edmundus Muskie • Alexander Haig • Georgius Shultz • Iacobus Baker • Laurentius Eagleburger • Warren Christopher • Magdalena Albright • Colinus Powell • Condoleezza Rice • Hilaria Clinton • Ioannes Kerry • Rex Tillerson • Michael PompeoOpus geopoliticum • Civitatum Foederatarum Secretarius Civitatis • Ministri a rebus externis civitatum Americanarum hodiernarum
Capsae cognatae: Praesides Civitatum Foederatarum • Secretarii a munitione Civitatum Foederatarum
|
|
ZlIm6rbO,n,sD,qJTTi
Popular posts from this blog
Tabula multilinguis Rosettana in Museo Britannico ostenditur. Tabula Rosettana, [1] etiam titulo OGIS 90 agnita, est stela decreto de rebus sacris in Aegypto anno 196 a.C.n. lato inscripta. Tabula iuxta Rosettam Aegypti, urbem in delta Nili et ad oram maris Mediterranei iacentem, anno 1799 a milite Francico reperta est. Inventio stelae, linguis duabus scripturisque tribus inscriptae, eruditis Instituti Aegypti statim nuntiata est; ibi enim iussu imperatoris Napoleonis eruditi omnium scientiarum (sub aegide Commissionis Scientiarum et Artium) properaverant cum expeditione Francica. Qua a Britannis mox debellata, tabula Rosettana Londinium missa hodie apud Museum Britannicum iacet. Textus Graecus cito lectus interpretationi textuum Aegyptiorum (in formis hieroglyphica et demotica expressorum) gradatim adiuvit. Denique textum plene interpretatus est Ioannes Franciscus Champollion. Ab opere eruditorum cumulativo coepit hodiernus scripturae hieroglyphicae linguaeque Aegyptiae a...
1
$begingroup$
This is what I mean as document text image: I want to label the texts in image as separate blocks and my model should detect these labels as classes. NOTE: This is how the end result should be like: The labels like Block 1, Block 2, Block 3,.. should be Logo, Title, Date,.. Others, etc. Work done: First approach : I tried to implement this method via Object Detection, it didn't work. It didn't even detect any text. Second approach : Then I tried it using PixelLink. As this model is build for scene text detection, it detected each and every text in the image. But this method can detect multiple lines of text if the threshold values are increased. But I have no idea how do I add labels to the text blocks. PIXEL_CLS_WEIGHT_all_ones = 'PIXEL_CLS_WEIGHT_all_ones' PIXEL_C...
1
$begingroup$
I have this LSTM model model = Sequential() model.add(Masking(mask_value=0, input_shape=(timesteps, features))) model.add(LSTM(100, dropout=0.2, recurrent_dropout=0.2, return_sequences=False)) model.add(Dense(features, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) and shapes X_train (21, 11, 5), y_train (21, 5) . Each timestep is represented by 5 features and return_sequences is set to False because I want to predict one 5D array (the next timestep) for each input sequence of 11 timesteps. I get the error ValueError: y_true and y_pred have different number of output (5!=1) If I reshape the data as X_train (21, 11, 5), y_train (21, 1, 5) instead I get the error ValueError: Inva...