Whatever Works

Multi tool use
Whatever Works (Latine fortasse "Quidquid munere fungitur") est pellicula et amoris comoedia anno 2009 ab illustri moderatore cinematographico Americano Woody Allen creata et ducta. In pellicula agunt clari histriones:
Larry David: Boris Yellnikoff
Evan Rachel Wood: Melody St. Ann Celestine
Henricus Cavill: Randy Lee James
Patricia Clarkson: Marietta Celestine
Eduardus Begley minor: John Celestine
Michael McKean: Joe Borckmann
Carolina McCormick: Jessica
Olek Krupa: Morgenstern
Christophorus Evan Welch: Howard Kaminsky
Jessica Hecht: Helena
Nexus externus |
De hac pellicula in Indice Interretiali Pellicularum .mw-parser-output .existinglinksgray a,.mw-parser-output .existinglinksgray a:visited{color:gray}.mw-parser-output .existinglinksgray a.new{color:#ba0000}.mw-parser-output .existinglinksgray a.new:visited{color:#a55858}
(Anglice)
.mw-parser-output .stipula{padding:3px;background:#F7F8FF;border:1px solid grey;margin:auto}.mw-parser-output .stipula td.cell1{background:transparent;color:white}

|
Haec stipula ad cinematographiam vel ad televisionem spectat. Amplifica, si potes!
|
Woody Allen pelliculae
What's Up, Tiger Lily? |
Take the Money and Run |
Bananas |
Everything You Always Wanted to Know About Sex* (*But Were Afraid to Ask) |
Sleeper |
Love and Death |
Annie Hall |
Interiors |
Manhattan |
Stardust Memories |
A Midsummer Night's Sex Comedy |
Zelig |
Broadway Danny Rose |
The Purple Rose of Cairo |
Hannah and Her Sister |
Radio Days |
September |
Another Woman |
Crimes and Misdemeanors |
Alice |
Shadows and Fog |
Husbands and Wives |
Manhattan Murder Mystery |
Bullets Over Broadway |
Don't Drink the Water |
Mighty Aphrodite |
Everyone Says I Love You |
Deconstructing Harry |
Celebrity |
Sweet and Lowdown |
Small Time Crooks |
The Curse of the Jade Scorpion |
Hollywood Ending |
Anything Else |
Melinda and Melinda |
Match Point |
Scoop |
Cassandra's Dream |
Vicky Cristina Barcelona |
Whatever Works |
You Will Meet a Tall Dark Stranger |
Midnight in Paris |
To Rome with Love |
Blue Jasmine |
Fading Gigolo |
Magic in the Moonlight |
Irrational Man |
Café Society
vVPLkB9C8woev H73QKh9cWyuzP86 TsncDEjOsnmucQEdTT6,mb8
Popular posts from this blog
Tabula multilinguis Rosettana in Museo Britannico ostenditur. Tabula Rosettana, [1] etiam titulo OGIS 90 agnita, est stela decreto de rebus sacris in Aegypto anno 196 a.C.n. lato inscripta. Tabula iuxta Rosettam Aegypti, urbem in delta Nili et ad oram maris Mediterranei iacentem, anno 1799 a milite Francico reperta est. Inventio stelae, linguis duabus scripturisque tribus inscriptae, eruditis Instituti Aegypti statim nuntiata est; ibi enim iussu imperatoris Napoleonis eruditi omnium scientiarum (sub aegide Commissionis Scientiarum et Artium) properaverant cum expeditione Francica. Qua a Britannis mox debellata, tabula Rosettana Londinium missa hodie apud Museum Britannicum iacet. Textus Graecus cito lectus interpretationi textuum Aegyptiorum (in formis hieroglyphica et demotica expressorum) gradatim adiuvit. Denique textum plene interpretatus est Ioannes Franciscus Champollion. Ab opere eruditorum cumulativo coepit hodiernus scripturae hieroglyphicae linguaeque Aegyptiae a...
1
$begingroup$
This is what I mean as document text image: I want to label the texts in image as separate blocks and my model should detect these labels as classes. NOTE: This is how the end result should be like: The labels like Block 1, Block 2, Block 3,.. should be Logo, Title, Date,.. Others, etc. Work done: First approach : I tried to implement this method via Object Detection, it didn't work. It didn't even detect any text. Second approach : Then I tried it using PixelLink. As this model is build for scene text detection, it detected each and every text in the image. But this method can detect multiple lines of text if the threshold values are increased. But I have no idea how do I add labels to the text blocks. PIXEL_CLS_WEIGHT_all_ones = 'PIXEL_CLS_WEIGHT_all_ones' PIXEL_C...
1
$begingroup$
I have this LSTM model model = Sequential() model.add(Masking(mask_value=0, input_shape=(timesteps, features))) model.add(LSTM(100, dropout=0.2, recurrent_dropout=0.2, return_sequences=False)) model.add(Dense(features, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) and shapes X_train (21, 11, 5), y_train (21, 5) . Each timestep is represented by 5 features and return_sequences is set to False because I want to predict one 5D array (the next timestep) for each input sequence of 11 timesteps. I get the error ValueError: y_true and y_pred have different number of output (5!=1) If I reshape the data as X_train (21, 11, 5), y_train (21, 1, 5) instead I get the error ValueError: Inva...