Square Root Distance from Integers
$begingroup$
Given a decimal number k
, find the smallest integer n
such that the square root of n
is within k
of an integer. However, the distance should be nonzero - n
cannot be a perfect square.
Given k
, a decimal number or a fraction (whichever is easier for you), such that 0 < k < 1
, output the smallest positive integer n
such that the difference between the square root of n
and the closest integer to the square root of n
is less than or equal to k
but nonzero.
If i
is the closest integer to the square root of n
, you are looking for the first n
where 0 < |i - sqrt(n)| <= k
.
Rules
- You cannot use a language's insufficient implementation of non-integer numbers to trivialize the problem.
- Otherwise, you can assume that
k
will not cause problems with, for example, floating point rounding.
Test Cases
.9 > 2
.5 > 2
.4 > 3
.3 > 3
.25 > 5
.2 > 8
.1 > 26
.05 > 101
.03 > 288
.01 > 2501
.005 > 10001
.003 > 27888
.001 > 250001
.0005 > 1000001
.0003 > 2778888
.0001 > 25000001
.0314159 > 255
.00314159 > 25599
.000314159 > 2534463
Comma separated test case inputs:
0.9, 0.5, 0.4, 0.3, 0.25, 0.2, 0.1, 0.05, 0.03, 0.01, 0.005, 0.003, 0.001, 0.0005, 0.0003, 0.0001, 0.0314159, 0.00314159, 0.000314159
This is code-golf, so shortest answer in bytes wins.
code-golf number integer
$endgroup$
add a comment |
$begingroup$
Given a decimal number k
, find the smallest integer n
such that the square root of n
is within k
of an integer. However, the distance should be nonzero - n
cannot be a perfect square.
Given k
, a decimal number or a fraction (whichever is easier for you), such that 0 < k < 1
, output the smallest positive integer n
such that the difference between the square root of n
and the closest integer to the square root of n
is less than or equal to k
but nonzero.
If i
is the closest integer to the square root of n
, you are looking for the first n
where 0 < |i - sqrt(n)| <= k
.
Rules
- You cannot use a language's insufficient implementation of non-integer numbers to trivialize the problem.
- Otherwise, you can assume that
k
will not cause problems with, for example, floating point rounding.
Test Cases
.9 > 2
.5 > 2
.4 > 3
.3 > 3
.25 > 5
.2 > 8
.1 > 26
.05 > 101
.03 > 288
.01 > 2501
.005 > 10001
.003 > 27888
.001 > 250001
.0005 > 1000001
.0003 > 2778888
.0001 > 25000001
.0314159 > 255
.00314159 > 25599
.000314159 > 2534463
Comma separated test case inputs:
0.9, 0.5, 0.4, 0.3, 0.25, 0.2, 0.1, 0.05, 0.03, 0.01, 0.005, 0.003, 0.001, 0.0005, 0.0003, 0.0001, 0.0314159, 0.00314159, 0.000314159
This is code-golf, so shortest answer in bytes wins.
code-golf number integer
$endgroup$
add a comment |
$begingroup$
Given a decimal number k
, find the smallest integer n
such that the square root of n
is within k
of an integer. However, the distance should be nonzero - n
cannot be a perfect square.
Given k
, a decimal number or a fraction (whichever is easier for you), such that 0 < k < 1
, output the smallest positive integer n
such that the difference between the square root of n
and the closest integer to the square root of n
is less than or equal to k
but nonzero.
If i
is the closest integer to the square root of n
, you are looking for the first n
where 0 < |i - sqrt(n)| <= k
.
Rules
- You cannot use a language's insufficient implementation of non-integer numbers to trivialize the problem.
- Otherwise, you can assume that
k
will not cause problems with, for example, floating point rounding.
Test Cases
.9 > 2
.5 > 2
.4 > 3
.3 > 3
.25 > 5
.2 > 8
.1 > 26
.05 > 101
.03 > 288
.01 > 2501
.005 > 10001
.003 > 27888
.001 > 250001
.0005 > 1000001
.0003 > 2778888
.0001 > 25000001
.0314159 > 255
.00314159 > 25599
.000314159 > 2534463
Comma separated test case inputs:
0.9, 0.5, 0.4, 0.3, 0.25, 0.2, 0.1, 0.05, 0.03, 0.01, 0.005, 0.003, 0.001, 0.0005, 0.0003, 0.0001, 0.0314159, 0.00314159, 0.000314159
This is code-golf, so shortest answer in bytes wins.
code-golf number integer
$endgroup$
Given a decimal number k
, find the smallest integer n
such that the square root of n
is within k
of an integer. However, the distance should be nonzero - n
cannot be a perfect square.
Given k
, a decimal number or a fraction (whichever is easier for you), such that 0 < k < 1
, output the smallest positive integer n
such that the difference between the square root of n
and the closest integer to the square root of n
is less than or equal to k
but nonzero.
If i
is the closest integer to the square root of n
, you are looking for the first n
where 0 < |i - sqrt(n)| <= k
.
Rules
- You cannot use a language's insufficient implementation of non-integer numbers to trivialize the problem.
- Otherwise, you can assume that
k
will not cause problems with, for example, floating point rounding.
Test Cases
.9 > 2
.5 > 2
.4 > 3
.3 > 3
.25 > 5
.2 > 8
.1 > 26
.05 > 101
.03 > 288
.01 > 2501
.005 > 10001
.003 > 27888
.001 > 250001
.0005 > 1000001
.0003 > 2778888
.0001 > 25000001
.0314159 > 255
.00314159 > 25599
.000314159 > 2534463
Comma separated test case inputs:
0.9, 0.5, 0.4, 0.3, 0.25, 0.2, 0.1, 0.05, 0.03, 0.01, 0.005, 0.003, 0.001, 0.0005, 0.0003, 0.0001, 0.0314159, 0.00314159, 0.000314159
This is code-golf, so shortest answer in bytes wins.
code-golf number integer
code-golf number integer
edited 2 hours ago
Stephen
asked 3 hours ago
StephenStephen
7,39823395
7,39823395
add a comment |
add a comment |
6 Answers
6
active
oldest
votes
$begingroup$
Wolfram Language (Mathematica), 34 bytes
Min[⌈.5/#+{-#,#}/2⌉^2+{1,-1}]&
Try it online!
Explanation
The result must be of the form $m^2 pm 1$ for some $m in mathbb{N}$. Solving the inequations $sqrt{m^2+1} - m le k$ and $m - sqrt{m^2-1} le k$, we get $m ge frac{1-k^2}{2k}$ and $m ge frac{1+k^2}{2k}$ respectively. So the result is $operatorname{min}left({leftlceil frac{1-k^2}{2k} rightrceil}^2+1, {leftlceil frac{1+k^2}{2k} rightrceil}^2-1right)$.
$endgroup$
add a comment |
$begingroup$
JavaScript (ES7), 51 50 bytes
f=(k,n)=>!(d=(s=n**.5)+~(s-.5))|d*d>k*k?f(k,-~n):n
Try it online!
(fails for the test cases that require too much recursion)
Non-recursive version, 57 56 bytes
k=>{for(n=1;!(d=(s=++n**.5)+~(s-.5))|d*d>k*k;);return n}
Try it online!
Or for 55 bytes:
k=>eval(`for(n=1;!(d=(s=++n**.5)+~(s-.5))|d*d>k*k;);n`)
Try it online!
(but this one is significantly slower)
$endgroup$
add a comment |
$begingroup$
Japt, 18 bytes
_¬%1©U>½-Z¬u1 a½}a
Try it online!
$endgroup$
$begingroup$
Might be shorter using Arnauld's solution
$endgroup$
– ASCII-only
1 hour ago
add a comment |
$begingroup$
J, 39 29 bytes
[:<./_1 1++:*:@>.@%~1+(,-)@*:
NB. This shorter version simply uses @alephalpha's formula.
Try it online!
39 bytes, original, brute force
2(>:@])^:((<+.0=])(<.-.)@(-<.)@%:)^:_~]
Try it online!
Handles all test cases
$endgroup$
add a comment |
$begingroup$
C# (Visual C# Interactive Compiler), 89 bytes
k=>{double n=1,p;for(;Math.Abs(Math.Round(p=Math.Sqrt(0d+n++))-p)>k|p%1==0;);return n-1;}
Try it online!
$endgroup$
add a comment |
$begingroup$
Python, 42 bytes
lambda k:((k-1/k)//2)**2+1-2*(k<1/k%2<2-k)
Try it online!
Based on alephalpha's formula, explicitly checking if we're in the $m^2-1$ or $m^2+1$ case via the condition k<1/k%2<2-k
.
Python 3.8 can save a byte with an inline assignment.
Python 3.8, 41 bytes
lambda k:((a:=k-1/k)//2)**2-1+2*(a/2%1<k)
Try it online!
These beat my recursive solution:
50 bytes
f=lambda k,x=1:k>.5-abs(x**.5%1-.5)>0 or-~f(k,x+1)
Try it online!
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["\$", "\$"]]);
});
});
}, "mathjax-editing");
StackExchange.ifUsing("editor", function () {
StackExchange.using("externalEditor", function () {
StackExchange.using("snippets", function () {
StackExchange.snippets.init();
});
});
}, "code-snippets");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "200"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fcodegolf.stackexchange.com%2fquestions%2f180412%2fsquare-root-distance-from-integers%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
6 Answers
6
active
oldest
votes
6 Answers
6
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Wolfram Language (Mathematica), 34 bytes
Min[⌈.5/#+{-#,#}/2⌉^2+{1,-1}]&
Try it online!
Explanation
The result must be of the form $m^2 pm 1$ for some $m in mathbb{N}$. Solving the inequations $sqrt{m^2+1} - m le k$ and $m - sqrt{m^2-1} le k$, we get $m ge frac{1-k^2}{2k}$ and $m ge frac{1+k^2}{2k}$ respectively. So the result is $operatorname{min}left({leftlceil frac{1-k^2}{2k} rightrceil}^2+1, {leftlceil frac{1+k^2}{2k} rightrceil}^2-1right)$.
$endgroup$
add a comment |
$begingroup$
Wolfram Language (Mathematica), 34 bytes
Min[⌈.5/#+{-#,#}/2⌉^2+{1,-1}]&
Try it online!
Explanation
The result must be of the form $m^2 pm 1$ for some $m in mathbb{N}$. Solving the inequations $sqrt{m^2+1} - m le k$ and $m - sqrt{m^2-1} le k$, we get $m ge frac{1-k^2}{2k}$ and $m ge frac{1+k^2}{2k}$ respectively. So the result is $operatorname{min}left({leftlceil frac{1-k^2}{2k} rightrceil}^2+1, {leftlceil frac{1+k^2}{2k} rightrceil}^2-1right)$.
$endgroup$
add a comment |
$begingroup$
Wolfram Language (Mathematica), 34 bytes
Min[⌈.5/#+{-#,#}/2⌉^2+{1,-1}]&
Try it online!
Explanation
The result must be of the form $m^2 pm 1$ for some $m in mathbb{N}$. Solving the inequations $sqrt{m^2+1} - m le k$ and $m - sqrt{m^2-1} le k$, we get $m ge frac{1-k^2}{2k}$ and $m ge frac{1+k^2}{2k}$ respectively. So the result is $operatorname{min}left({leftlceil frac{1-k^2}{2k} rightrceil}^2+1, {leftlceil frac{1+k^2}{2k} rightrceil}^2-1right)$.
$endgroup$
Wolfram Language (Mathematica), 34 bytes
Min[⌈.5/#+{-#,#}/2⌉^2+{1,-1}]&
Try it online!
Explanation
The result must be of the form $m^2 pm 1$ for some $m in mathbb{N}$. Solving the inequations $sqrt{m^2+1} - m le k$ and $m - sqrt{m^2-1} le k$, we get $m ge frac{1-k^2}{2k}$ and $m ge frac{1+k^2}{2k}$ respectively. So the result is $operatorname{min}left({leftlceil frac{1-k^2}{2k} rightrceil}^2+1, {leftlceil frac{1+k^2}{2k} rightrceil}^2-1right)$.
edited 1 hour ago
answered 2 hours ago
alephalphaalephalpha
21.4k32991
21.4k32991
add a comment |
add a comment |
$begingroup$
JavaScript (ES7), 51 50 bytes
f=(k,n)=>!(d=(s=n**.5)+~(s-.5))|d*d>k*k?f(k,-~n):n
Try it online!
(fails for the test cases that require too much recursion)
Non-recursive version, 57 56 bytes
k=>{for(n=1;!(d=(s=++n**.5)+~(s-.5))|d*d>k*k;);return n}
Try it online!
Or for 55 bytes:
k=>eval(`for(n=1;!(d=(s=++n**.5)+~(s-.5))|d*d>k*k;);n`)
Try it online!
(but this one is significantly slower)
$endgroup$
add a comment |
$begingroup$
JavaScript (ES7), 51 50 bytes
f=(k,n)=>!(d=(s=n**.5)+~(s-.5))|d*d>k*k?f(k,-~n):n
Try it online!
(fails for the test cases that require too much recursion)
Non-recursive version, 57 56 bytes
k=>{for(n=1;!(d=(s=++n**.5)+~(s-.5))|d*d>k*k;);return n}
Try it online!
Or for 55 bytes:
k=>eval(`for(n=1;!(d=(s=++n**.5)+~(s-.5))|d*d>k*k;);n`)
Try it online!
(but this one is significantly slower)
$endgroup$
add a comment |
$begingroup$
JavaScript (ES7), 51 50 bytes
f=(k,n)=>!(d=(s=n**.5)+~(s-.5))|d*d>k*k?f(k,-~n):n
Try it online!
(fails for the test cases that require too much recursion)
Non-recursive version, 57 56 bytes
k=>{for(n=1;!(d=(s=++n**.5)+~(s-.5))|d*d>k*k;);return n}
Try it online!
Or for 55 bytes:
k=>eval(`for(n=1;!(d=(s=++n**.5)+~(s-.5))|d*d>k*k;);n`)
Try it online!
(but this one is significantly slower)
$endgroup$
JavaScript (ES7), 51 50 bytes
f=(k,n)=>!(d=(s=n**.5)+~(s-.5))|d*d>k*k?f(k,-~n):n
Try it online!
(fails for the test cases that require too much recursion)
Non-recursive version, 57 56 bytes
k=>{for(n=1;!(d=(s=++n**.5)+~(s-.5))|d*d>k*k;);return n}
Try it online!
Or for 55 bytes:
k=>eval(`for(n=1;!(d=(s=++n**.5)+~(s-.5))|d*d>k*k;);n`)
Try it online!
(but this one is significantly slower)
edited 2 hours ago
answered 2 hours ago
ArnauldArnauld
76.8k693322
76.8k693322
add a comment |
add a comment |
$begingroup$
Japt, 18 bytes
_¬%1©U>½-Z¬u1 a½}a
Try it online!
$endgroup$
$begingroup$
Might be shorter using Arnauld's solution
$endgroup$
– ASCII-only
1 hour ago
add a comment |
$begingroup$
Japt, 18 bytes
_¬%1©U>½-Z¬u1 a½}a
Try it online!
$endgroup$
$begingroup$
Might be shorter using Arnauld's solution
$endgroup$
– ASCII-only
1 hour ago
add a comment |
$begingroup$
Japt, 18 bytes
_¬%1©U>½-Z¬u1 a½}a
Try it online!
$endgroup$
Japt, 18 bytes
_¬%1©U>½-Z¬u1 a½}a
Try it online!
edited 2 hours ago
answered 2 hours ago
ASCII-onlyASCII-only
3,3821236
3,3821236
$begingroup$
Might be shorter using Arnauld's solution
$endgroup$
– ASCII-only
1 hour ago
add a comment |
$begingroup$
Might be shorter using Arnauld's solution
$endgroup$
– ASCII-only
1 hour ago
$begingroup$
Might be shorter using Arnauld's solution
$endgroup$
– ASCII-only
1 hour ago
$begingroup$
Might be shorter using Arnauld's solution
$endgroup$
– ASCII-only
1 hour ago
add a comment |
$begingroup$
J, 39 29 bytes
[:<./_1 1++:*:@>.@%~1+(,-)@*:
NB. This shorter version simply uses @alephalpha's formula.
Try it online!
39 bytes, original, brute force
2(>:@])^:((<+.0=])(<.-.)@(-<.)@%:)^:_~]
Try it online!
Handles all test cases
$endgroup$
add a comment |
$begingroup$
J, 39 29 bytes
[:<./_1 1++:*:@>.@%~1+(,-)@*:
NB. This shorter version simply uses @alephalpha's formula.
Try it online!
39 bytes, original, brute force
2(>:@])^:((<+.0=])(<.-.)@(-<.)@%:)^:_~]
Try it online!
Handles all test cases
$endgroup$
add a comment |
$begingroup$
J, 39 29 bytes
[:<./_1 1++:*:@>.@%~1+(,-)@*:
NB. This shorter version simply uses @alephalpha's formula.
Try it online!
39 bytes, original, brute force
2(>:@])^:((<+.0=])(<.-.)@(-<.)@%:)^:_~]
Try it online!
Handles all test cases
$endgroup$
J, 39 29 bytes
[:<./_1 1++:*:@>.@%~1+(,-)@*:
NB. This shorter version simply uses @alephalpha's formula.
Try it online!
39 bytes, original, brute force
2(>:@])^:((<+.0=])(<.-.)@(-<.)@%:)^:_~]
Try it online!
Handles all test cases
edited 33 mins ago
answered 1 hour ago
JonahJonah
2,351916
2,351916
add a comment |
add a comment |
$begingroup$
C# (Visual C# Interactive Compiler), 89 bytes
k=>{double n=1,p;for(;Math.Abs(Math.Round(p=Math.Sqrt(0d+n++))-p)>k|p%1==0;);return n-1;}
Try it online!
$endgroup$
add a comment |
$begingroup$
C# (Visual C# Interactive Compiler), 89 bytes
k=>{double n=1,p;for(;Math.Abs(Math.Round(p=Math.Sqrt(0d+n++))-p)>k|p%1==0;);return n-1;}
Try it online!
$endgroup$
add a comment |
$begingroup$
C# (Visual C# Interactive Compiler), 89 bytes
k=>{double n=1,p;for(;Math.Abs(Math.Round(p=Math.Sqrt(0d+n++))-p)>k|p%1==0;);return n-1;}
Try it online!
$endgroup$
C# (Visual C# Interactive Compiler), 89 bytes
k=>{double n=1,p;for(;Math.Abs(Math.Round(p=Math.Sqrt(0d+n++))-p)>k|p%1==0;);return n-1;}
Try it online!
answered 1 hour ago
Embodiment of IgnoranceEmbodiment of Ignorance
1,170119
1,170119
add a comment |
add a comment |
$begingroup$
Python, 42 bytes
lambda k:((k-1/k)//2)**2+1-2*(k<1/k%2<2-k)
Try it online!
Based on alephalpha's formula, explicitly checking if we're in the $m^2-1$ or $m^2+1$ case via the condition k<1/k%2<2-k
.
Python 3.8 can save a byte with an inline assignment.
Python 3.8, 41 bytes
lambda k:((a:=k-1/k)//2)**2-1+2*(a/2%1<k)
Try it online!
These beat my recursive solution:
50 bytes
f=lambda k,x=1:k>.5-abs(x**.5%1-.5)>0 or-~f(k,x+1)
Try it online!
$endgroup$
add a comment |
$begingroup$
Python, 42 bytes
lambda k:((k-1/k)//2)**2+1-2*(k<1/k%2<2-k)
Try it online!
Based on alephalpha's formula, explicitly checking if we're in the $m^2-1$ or $m^2+1$ case via the condition k<1/k%2<2-k
.
Python 3.8 can save a byte with an inline assignment.
Python 3.8, 41 bytes
lambda k:((a:=k-1/k)//2)**2-1+2*(a/2%1<k)
Try it online!
These beat my recursive solution:
50 bytes
f=lambda k,x=1:k>.5-abs(x**.5%1-.5)>0 or-~f(k,x+1)
Try it online!
$endgroup$
add a comment |
$begingroup$
Python, 42 bytes
lambda k:((k-1/k)//2)**2+1-2*(k<1/k%2<2-k)
Try it online!
Based on alephalpha's formula, explicitly checking if we're in the $m^2-1$ or $m^2+1$ case via the condition k<1/k%2<2-k
.
Python 3.8 can save a byte with an inline assignment.
Python 3.8, 41 bytes
lambda k:((a:=k-1/k)//2)**2-1+2*(a/2%1<k)
Try it online!
These beat my recursive solution:
50 bytes
f=lambda k,x=1:k>.5-abs(x**.5%1-.5)>0 or-~f(k,x+1)
Try it online!
$endgroup$
Python, 42 bytes
lambda k:((k-1/k)//2)**2+1-2*(k<1/k%2<2-k)
Try it online!
Based on alephalpha's formula, explicitly checking if we're in the $m^2-1$ or $m^2+1$ case via the condition k<1/k%2<2-k
.
Python 3.8 can save a byte with an inline assignment.
Python 3.8, 41 bytes
lambda k:((a:=k-1/k)//2)**2-1+2*(a/2%1<k)
Try it online!
These beat my recursive solution:
50 bytes
f=lambda k,x=1:k>.5-abs(x**.5%1-.5)>0 or-~f(k,x+1)
Try it online!
edited 7 mins ago
answered 41 mins ago
xnorxnor
91.1k18186442
91.1k18186442
add a comment |
add a comment |
If this is an answer to a challenge…
…Be sure to follow the challenge specification. However, please refrain from exploiting obvious loopholes. Answers abusing any of the standard loopholes are considered invalid. If you think a specification is unclear or underspecified, comment on the question instead.
…Try to optimize your score. For instance, answers to code-golf challenges should attempt to be as short as possible. You can always include a readable version of the code in addition to the competitive one.
Explanations of your answer make it more interesting to read and are very much encouraged.…Include a short header which indicates the language(s) of your code and its score, as defined by the challenge.
More generally…
…Please make sure to answer the question and provide sufficient detail.
…Avoid asking for help, clarification or responding to other answers (use comments instead).
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fcodegolf.stackexchange.com%2fquestions%2f180412%2fsquare-root-distance-from-integers%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown