Why CLRS example on residual networks does not follows its formula?












1












$begingroup$


I am learning algorithms to solve Maximum Flow problem by reading the CRLS book and confused by the following figure:



figure 26.4



That is:




A flow in a residual network provides a roadmap for adding flow to the
original flow network. If $f$ is a flow in $G$ and $f'$ is a flow in
the corresponding residual network $G_f$, we define $f uparrow f'$,
the augmentation of flow $f$ by $f'$, to be a function from $V times V$ to
$R$, defined by



$$(f uparrow f')(u, v) = begin{cases} f(u,v) + f'(u, v) - f'(v, u) &
> text{if (u,v) $in$ E} \ 0 & text{otherwise} end{cases}$$




How the flow network in (c), for example $(s, v_2)$ got the flow 12 ?
If we follow the formula, it must have a flow 5:
$8 + 5 - 8 = 5$










share|cite|improve this question









$endgroup$

















    1












    $begingroup$


    I am learning algorithms to solve Maximum Flow problem by reading the CRLS book and confused by the following figure:



    figure 26.4



    That is:




    A flow in a residual network provides a roadmap for adding flow to the
    original flow network. If $f$ is a flow in $G$ and $f'$ is a flow in
    the corresponding residual network $G_f$, we define $f uparrow f'$,
    the augmentation of flow $f$ by $f'$, to be a function from $V times V$ to
    $R$, defined by



    $$(f uparrow f')(u, v) = begin{cases} f(u,v) + f'(u, v) - f'(v, u) &
    > text{if (u,v) $in$ E} \ 0 & text{otherwise} end{cases}$$




    How the flow network in (c), for example $(s, v_2)$ got the flow 12 ?
    If we follow the formula, it must have a flow 5:
    $8 + 5 - 8 = 5$










    share|cite|improve this question









    $endgroup$















      1












      1








      1





      $begingroup$


      I am learning algorithms to solve Maximum Flow problem by reading the CRLS book and confused by the following figure:



      figure 26.4



      That is:




      A flow in a residual network provides a roadmap for adding flow to the
      original flow network. If $f$ is a flow in $G$ and $f'$ is a flow in
      the corresponding residual network $G_f$, we define $f uparrow f'$,
      the augmentation of flow $f$ by $f'$, to be a function from $V times V$ to
      $R$, defined by



      $$(f uparrow f')(u, v) = begin{cases} f(u,v) + f'(u, v) - f'(v, u) &
      > text{if (u,v) $in$ E} \ 0 & text{otherwise} end{cases}$$




      How the flow network in (c), for example $(s, v_2)$ got the flow 12 ?
      If we follow the formula, it must have a flow 5:
      $8 + 5 - 8 = 5$










      share|cite|improve this question









      $endgroup$




      I am learning algorithms to solve Maximum Flow problem by reading the CRLS book and confused by the following figure:



      figure 26.4



      That is:




      A flow in a residual network provides a roadmap for adding flow to the
      original flow network. If $f$ is a flow in $G$ and $f'$ is a flow in
      the corresponding residual network $G_f$, we define $f uparrow f'$,
      the augmentation of flow $f$ by $f'$, to be a function from $V times V$ to
      $R$, defined by



      $$(f uparrow f')(u, v) = begin{cases} f(u,v) + f'(u, v) - f'(v, u) &
      > text{if (u,v) $in$ E} \ 0 & text{otherwise} end{cases}$$




      How the flow network in (c), for example $(s, v_2)$ got the flow 12 ?
      If we follow the formula, it must have a flow 5:
      $8 + 5 - 8 = 5$







      algorithms network-flow






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked yesterday









      maksadbekmaksadbek

      1185




      1185






















          2 Answers
          2






          active

          oldest

          votes


















          4












          $begingroup$

          That's not what the formula gives you. As the caption says, the capacity of the augmenting path in the residual network in (b) is $4$. Therefore we send 4 units of flow along the augmenting path from $s$ to $t$, namely, the path $s to v_2 to v_3 to t$. In particular, $f(s,v_2)=8$, $f'(s,v_2)=4$, and $f'(v_2,s)=0$, so the updated flow is $8+4-0=12$.






          share|cite|improve this answer









          $endgroup$





















            3












            $begingroup$

            It is explained in part (b) of the caption of Figure 26.4.




            The residual network $G_f$ with augmenting path $p$ shaded; its residual capacity is $c_f(p)=c_f(v_2,v_3)=4$.




            Since the capacity of path $p$ is 4 (not 5), we find a flow $f'$ in the residual network $G_f$ that is defined by $f'(s,v_2)=f'(v_2,v_3)=f'(v_3,t)=4$. So for the network flow $fuparrow f'$ in (c), we have
            $$ (fuparrow f')(v_2, v_3)=f(v_2,v_3)+f'(v_2,v_3) = 8+4=12.$$






            share|cite|improve this answer











            $endgroup$














              Your Answer





              StackExchange.ifUsing("editor", function () {
              return StackExchange.using("mathjaxEditing", function () {
              StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
              StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
              });
              });
              }, "mathjax-editing");

              StackExchange.ready(function() {
              var channelOptions = {
              tags: "".split(" "),
              id: "419"
              };
              initTagRenderer("".split(" "), "".split(" "), channelOptions);

              StackExchange.using("externalEditor", function() {
              // Have to fire editor after snippets, if snippets enabled
              if (StackExchange.settings.snippets.snippetsEnabled) {
              StackExchange.using("snippets", function() {
              createEditor();
              });
              }
              else {
              createEditor();
              }
              });

              function createEditor() {
              StackExchange.prepareEditor({
              heartbeatType: 'answer',
              autoActivateHeartbeat: false,
              convertImagesToLinks: false,
              noModals: true,
              showLowRepImageUploadWarning: true,
              reputationToPostImages: null,
              bindNavPrevention: true,
              postfix: "",
              imageUploader: {
              brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
              contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
              allowUrls: true
              },
              onDemand: true,
              discardSelector: ".discard-answer"
              ,immediatelyShowMarkdownHelp:true
              });


              }
              });














              draft saved

              draft discarded


















              StackExchange.ready(
              function () {
              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fcs.stackexchange.com%2fquestions%2f106608%2fwhy-clrs-example-on-residual-networks-does-not-follows-its-formula%23new-answer', 'question_page');
              }
              );

              Post as a guest















              Required, but never shown

























              2 Answers
              2






              active

              oldest

              votes








              2 Answers
              2






              active

              oldest

              votes









              active

              oldest

              votes






              active

              oldest

              votes









              4












              $begingroup$

              That's not what the formula gives you. As the caption says, the capacity of the augmenting path in the residual network in (b) is $4$. Therefore we send 4 units of flow along the augmenting path from $s$ to $t$, namely, the path $s to v_2 to v_3 to t$. In particular, $f(s,v_2)=8$, $f'(s,v_2)=4$, and $f'(v_2,s)=0$, so the updated flow is $8+4-0=12$.






              share|cite|improve this answer









              $endgroup$


















                4












                $begingroup$

                That's not what the formula gives you. As the caption says, the capacity of the augmenting path in the residual network in (b) is $4$. Therefore we send 4 units of flow along the augmenting path from $s$ to $t$, namely, the path $s to v_2 to v_3 to t$. In particular, $f(s,v_2)=8$, $f'(s,v_2)=4$, and $f'(v_2,s)=0$, so the updated flow is $8+4-0=12$.






                share|cite|improve this answer









                $endgroup$
















                  4












                  4








                  4





                  $begingroup$

                  That's not what the formula gives you. As the caption says, the capacity of the augmenting path in the residual network in (b) is $4$. Therefore we send 4 units of flow along the augmenting path from $s$ to $t$, namely, the path $s to v_2 to v_3 to t$. In particular, $f(s,v_2)=8$, $f'(s,v_2)=4$, and $f'(v_2,s)=0$, so the updated flow is $8+4-0=12$.






                  share|cite|improve this answer









                  $endgroup$



                  That's not what the formula gives you. As the caption says, the capacity of the augmenting path in the residual network in (b) is $4$. Therefore we send 4 units of flow along the augmenting path from $s$ to $t$, namely, the path $s to v_2 to v_3 to t$. In particular, $f(s,v_2)=8$, $f'(s,v_2)=4$, and $f'(v_2,s)=0$, so the updated flow is $8+4-0=12$.







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered yesterday









                  D.W.D.W.

                  103k12129294




                  103k12129294























                      3












                      $begingroup$

                      It is explained in part (b) of the caption of Figure 26.4.




                      The residual network $G_f$ with augmenting path $p$ shaded; its residual capacity is $c_f(p)=c_f(v_2,v_3)=4$.




                      Since the capacity of path $p$ is 4 (not 5), we find a flow $f'$ in the residual network $G_f$ that is defined by $f'(s,v_2)=f'(v_2,v_3)=f'(v_3,t)=4$. So for the network flow $fuparrow f'$ in (c), we have
                      $$ (fuparrow f')(v_2, v_3)=f(v_2,v_3)+f'(v_2,v_3) = 8+4=12.$$






                      share|cite|improve this answer











                      $endgroup$


















                        3












                        $begingroup$

                        It is explained in part (b) of the caption of Figure 26.4.




                        The residual network $G_f$ with augmenting path $p$ shaded; its residual capacity is $c_f(p)=c_f(v_2,v_3)=4$.




                        Since the capacity of path $p$ is 4 (not 5), we find a flow $f'$ in the residual network $G_f$ that is defined by $f'(s,v_2)=f'(v_2,v_3)=f'(v_3,t)=4$. So for the network flow $fuparrow f'$ in (c), we have
                        $$ (fuparrow f')(v_2, v_3)=f(v_2,v_3)+f'(v_2,v_3) = 8+4=12.$$






                        share|cite|improve this answer











                        $endgroup$
















                          3












                          3








                          3





                          $begingroup$

                          It is explained in part (b) of the caption of Figure 26.4.




                          The residual network $G_f$ with augmenting path $p$ shaded; its residual capacity is $c_f(p)=c_f(v_2,v_3)=4$.




                          Since the capacity of path $p$ is 4 (not 5), we find a flow $f'$ in the residual network $G_f$ that is defined by $f'(s,v_2)=f'(v_2,v_3)=f'(v_3,t)=4$. So for the network flow $fuparrow f'$ in (c), we have
                          $$ (fuparrow f')(v_2, v_3)=f(v_2,v_3)+f'(v_2,v_3) = 8+4=12.$$






                          share|cite|improve this answer











                          $endgroup$



                          It is explained in part (b) of the caption of Figure 26.4.




                          The residual network $G_f$ with augmenting path $p$ shaded; its residual capacity is $c_f(p)=c_f(v_2,v_3)=4$.




                          Since the capacity of path $p$ is 4 (not 5), we find a flow $f'$ in the residual network $G_f$ that is defined by $f'(s,v_2)=f'(v_2,v_3)=f'(v_3,t)=4$. So for the network flow $fuparrow f'$ in (c), we have
                          $$ (fuparrow f')(v_2, v_3)=f(v_2,v_3)+f'(v_2,v_3) = 8+4=12.$$







                          share|cite|improve this answer














                          share|cite|improve this answer



                          share|cite|improve this answer








                          edited yesterday

























                          answered yesterday









                          Apass.JackApass.Jack

                          14k1940




                          14k1940






























                              draft saved

                              draft discarded




















































                              Thanks for contributing an answer to Computer Science Stack Exchange!


                              • Please be sure to answer the question. Provide details and share your research!

                              But avoid



                              • Asking for help, clarification, or responding to other answers.

                              • Making statements based on opinion; back them up with references or personal experience.


                              Use MathJax to format equations. MathJax reference.


                              To learn more, see our tips on writing great answers.




                              draft saved


                              draft discarded














                              StackExchange.ready(
                              function () {
                              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fcs.stackexchange.com%2fquestions%2f106608%2fwhy-clrs-example-on-residual-networks-does-not-follows-its-formula%23new-answer', 'question_page');
                              }
                              );

                              Post as a guest















                              Required, but never shown





















































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown

































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown







                              Popular posts from this blog

                              How to label and detect the document text images

                              Vallis Paradisi

                              Tabula Rosettana