Taylor expansion of ln(1-x)
$begingroup$
I was just wondering where the minus sign in the first term of the Taylor expansion of $ ln(1-x) $ comes from? In wikipedia page and everywhere else $ln(1-x)$ is given by
$$
ln(1-x) = -x-dots
$$
But assuming $x$ is small and expand around $1$, I got
$$
ln(1-x) approx ln(1) + frac{d(ln(1-x))}{dx}biggvert_{x=0}[(1-x)-1] approx 0 + frac{1}{1-x}biggvert_{x=0}(-1)(-x) = x.
$$
Using the definition of Taylor expansion $f(z) approx f(a) + frac{df(z)}{dz}biggvert_{z=a}(z-a) $, where here $z=1-x$, $f(z) = ln(1-z)$ and $a=1$.
I know you can get $ln(1-x) approx -x$ by e.g. substitute $xrightarrow -x$ into the expansion of $ln(1+x)$ and through other methods etc. But I still don't quite get how you can get the minus sign from Taylor expansion alone. Thanks.
calculus
New contributor
$endgroup$
add a comment |
$begingroup$
I was just wondering where the minus sign in the first term of the Taylor expansion of $ ln(1-x) $ comes from? In wikipedia page and everywhere else $ln(1-x)$ is given by
$$
ln(1-x) = -x-dots
$$
But assuming $x$ is small and expand around $1$, I got
$$
ln(1-x) approx ln(1) + frac{d(ln(1-x))}{dx}biggvert_{x=0}[(1-x)-1] approx 0 + frac{1}{1-x}biggvert_{x=0}(-1)(-x) = x.
$$
Using the definition of Taylor expansion $f(z) approx f(a) + frac{df(z)}{dz}biggvert_{z=a}(z-a) $, where here $z=1-x$, $f(z) = ln(1-z)$ and $a=1$.
I know you can get $ln(1-x) approx -x$ by e.g. substitute $xrightarrow -x$ into the expansion of $ln(1+x)$ and through other methods etc. But I still don't quite get how you can get the minus sign from Taylor expansion alone. Thanks.
calculus
New contributor
$endgroup$
add a comment |
$begingroup$
I was just wondering where the minus sign in the first term of the Taylor expansion of $ ln(1-x) $ comes from? In wikipedia page and everywhere else $ln(1-x)$ is given by
$$
ln(1-x) = -x-dots
$$
But assuming $x$ is small and expand around $1$, I got
$$
ln(1-x) approx ln(1) + frac{d(ln(1-x))}{dx}biggvert_{x=0}[(1-x)-1] approx 0 + frac{1}{1-x}biggvert_{x=0}(-1)(-x) = x.
$$
Using the definition of Taylor expansion $f(z) approx f(a) + frac{df(z)}{dz}biggvert_{z=a}(z-a) $, where here $z=1-x$, $f(z) = ln(1-z)$ and $a=1$.
I know you can get $ln(1-x) approx -x$ by e.g. substitute $xrightarrow -x$ into the expansion of $ln(1+x)$ and through other methods etc. But I still don't quite get how you can get the minus sign from Taylor expansion alone. Thanks.
calculus
New contributor
$endgroup$
I was just wondering where the minus sign in the first term of the Taylor expansion of $ ln(1-x) $ comes from? In wikipedia page and everywhere else $ln(1-x)$ is given by
$$
ln(1-x) = -x-dots
$$
But assuming $x$ is small and expand around $1$, I got
$$
ln(1-x) approx ln(1) + frac{d(ln(1-x))}{dx}biggvert_{x=0}[(1-x)-1] approx 0 + frac{1}{1-x}biggvert_{x=0}(-1)(-x) = x.
$$
Using the definition of Taylor expansion $f(z) approx f(a) + frac{df(z)}{dz}biggvert_{z=a}(z-a) $, where here $z=1-x$, $f(z) = ln(1-z)$ and $a=1$.
I know you can get $ln(1-x) approx -x$ by e.g. substitute $xrightarrow -x$ into the expansion of $ln(1+x)$ and through other methods etc. But I still don't quite get how you can get the minus sign from Taylor expansion alone. Thanks.
calculus
calculus
New contributor
New contributor
New contributor
asked 2 hours ago
LepnakLepnak
182
182
New contributor
New contributor
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
If one considers
$$
f(x)=ln (1-x),qquad |x|<1,
$$one has
$$
f(0)=0,quad f'(x)=-frac{1}{1-x},quad f'(0)=-1,quad f''(x)=-frac{1}{(1-x)^2},quad f''(0)=-1,
$$ giving, by the Taylor expansion,
$$
f(x)=0-x-frac{x^2}2+O(x^3)
$$as $x to 0$.
$endgroup$
$begingroup$
Thanks for the answer but what about the $(z-a)$ part in the Taylor expansion $f(z) = f(a)+f^prime(a)(z-a)$? Substitute $z=1-x$ and $a=1$ gives a $-x$ though?
$endgroup$
– Lepnak
2 hours ago
$begingroup$
The Taylor series centred at $0$ is $$f(x)=f(0)+f'(0)x +cdots.$$ Use $f(0)$ and $f'(0)$ from Olivier Oloa's answer and you should get the right answer. In your OP, you are actually expanding $f(x)$ around $0$, not around $1$ (where $f(x)=ln (1-x)$). So $a=0$. By the way, if you substitute $z=1-x$ where $f(z)=ln (1-z)$, you would get $ln(1-(1-x))=ln x$, rather than $ln(1-x)$ (which is what you want). So no need to do this substitution.
$endgroup$
– Minus One-Twelfth
1 hour ago
$begingroup$
Hmm I think I see what I did wrong. Thanks for all your answers.
$endgroup$
– Lepnak
1 hour ago
add a comment |
$begingroup$
$$y=ln(1-x)$$
$$y'=-frac{1}{1-x}=-sum_{n=0}^{infty}x^n$$
so
$$ln(1-x)=-sum_{n=0}^{infty}frac{x^{n+1}}{n+1}=-sum_{n=1}^{infty}frac{x^{n}}{n}$$
$endgroup$
add a comment |
Your Answer
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Lepnak is a new contributor. Be nice, and check out our Code of Conduct.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3193068%2ftaylor-expansion-of-ln1-x%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
If one considers
$$
f(x)=ln (1-x),qquad |x|<1,
$$one has
$$
f(0)=0,quad f'(x)=-frac{1}{1-x},quad f'(0)=-1,quad f''(x)=-frac{1}{(1-x)^2},quad f''(0)=-1,
$$ giving, by the Taylor expansion,
$$
f(x)=0-x-frac{x^2}2+O(x^3)
$$as $x to 0$.
$endgroup$
$begingroup$
Thanks for the answer but what about the $(z-a)$ part in the Taylor expansion $f(z) = f(a)+f^prime(a)(z-a)$? Substitute $z=1-x$ and $a=1$ gives a $-x$ though?
$endgroup$
– Lepnak
2 hours ago
$begingroup$
The Taylor series centred at $0$ is $$f(x)=f(0)+f'(0)x +cdots.$$ Use $f(0)$ and $f'(0)$ from Olivier Oloa's answer and you should get the right answer. In your OP, you are actually expanding $f(x)$ around $0$, not around $1$ (where $f(x)=ln (1-x)$). So $a=0$. By the way, if you substitute $z=1-x$ where $f(z)=ln (1-z)$, you would get $ln(1-(1-x))=ln x$, rather than $ln(1-x)$ (which is what you want). So no need to do this substitution.
$endgroup$
– Minus One-Twelfth
1 hour ago
$begingroup$
Hmm I think I see what I did wrong. Thanks for all your answers.
$endgroup$
– Lepnak
1 hour ago
add a comment |
$begingroup$
If one considers
$$
f(x)=ln (1-x),qquad |x|<1,
$$one has
$$
f(0)=0,quad f'(x)=-frac{1}{1-x},quad f'(0)=-1,quad f''(x)=-frac{1}{(1-x)^2},quad f''(0)=-1,
$$ giving, by the Taylor expansion,
$$
f(x)=0-x-frac{x^2}2+O(x^3)
$$as $x to 0$.
$endgroup$
$begingroup$
Thanks for the answer but what about the $(z-a)$ part in the Taylor expansion $f(z) = f(a)+f^prime(a)(z-a)$? Substitute $z=1-x$ and $a=1$ gives a $-x$ though?
$endgroup$
– Lepnak
2 hours ago
$begingroup$
The Taylor series centred at $0$ is $$f(x)=f(0)+f'(0)x +cdots.$$ Use $f(0)$ and $f'(0)$ from Olivier Oloa's answer and you should get the right answer. In your OP, you are actually expanding $f(x)$ around $0$, not around $1$ (where $f(x)=ln (1-x)$). So $a=0$. By the way, if you substitute $z=1-x$ where $f(z)=ln (1-z)$, you would get $ln(1-(1-x))=ln x$, rather than $ln(1-x)$ (which is what you want). So no need to do this substitution.
$endgroup$
– Minus One-Twelfth
1 hour ago
$begingroup$
Hmm I think I see what I did wrong. Thanks for all your answers.
$endgroup$
– Lepnak
1 hour ago
add a comment |
$begingroup$
If one considers
$$
f(x)=ln (1-x),qquad |x|<1,
$$one has
$$
f(0)=0,quad f'(x)=-frac{1}{1-x},quad f'(0)=-1,quad f''(x)=-frac{1}{(1-x)^2},quad f''(0)=-1,
$$ giving, by the Taylor expansion,
$$
f(x)=0-x-frac{x^2}2+O(x^3)
$$as $x to 0$.
$endgroup$
If one considers
$$
f(x)=ln (1-x),qquad |x|<1,
$$one has
$$
f(0)=0,quad f'(x)=-frac{1}{1-x},quad f'(0)=-1,quad f''(x)=-frac{1}{(1-x)^2},quad f''(0)=-1,
$$ giving, by the Taylor expansion,
$$
f(x)=0-x-frac{x^2}2+O(x^3)
$$as $x to 0$.
edited 2 hours ago
answered 2 hours ago
Olivier OloaOlivier Oloa
109k17178294
109k17178294
$begingroup$
Thanks for the answer but what about the $(z-a)$ part in the Taylor expansion $f(z) = f(a)+f^prime(a)(z-a)$? Substitute $z=1-x$ and $a=1$ gives a $-x$ though?
$endgroup$
– Lepnak
2 hours ago
$begingroup$
The Taylor series centred at $0$ is $$f(x)=f(0)+f'(0)x +cdots.$$ Use $f(0)$ and $f'(0)$ from Olivier Oloa's answer and you should get the right answer. In your OP, you are actually expanding $f(x)$ around $0$, not around $1$ (where $f(x)=ln (1-x)$). So $a=0$. By the way, if you substitute $z=1-x$ where $f(z)=ln (1-z)$, you would get $ln(1-(1-x))=ln x$, rather than $ln(1-x)$ (which is what you want). So no need to do this substitution.
$endgroup$
– Minus One-Twelfth
1 hour ago
$begingroup$
Hmm I think I see what I did wrong. Thanks for all your answers.
$endgroup$
– Lepnak
1 hour ago
add a comment |
$begingroup$
Thanks for the answer but what about the $(z-a)$ part in the Taylor expansion $f(z) = f(a)+f^prime(a)(z-a)$? Substitute $z=1-x$ and $a=1$ gives a $-x$ though?
$endgroup$
– Lepnak
2 hours ago
$begingroup$
The Taylor series centred at $0$ is $$f(x)=f(0)+f'(0)x +cdots.$$ Use $f(0)$ and $f'(0)$ from Olivier Oloa's answer and you should get the right answer. In your OP, you are actually expanding $f(x)$ around $0$, not around $1$ (where $f(x)=ln (1-x)$). So $a=0$. By the way, if you substitute $z=1-x$ where $f(z)=ln (1-z)$, you would get $ln(1-(1-x))=ln x$, rather than $ln(1-x)$ (which is what you want). So no need to do this substitution.
$endgroup$
– Minus One-Twelfth
1 hour ago
$begingroup$
Hmm I think I see what I did wrong. Thanks for all your answers.
$endgroup$
– Lepnak
1 hour ago
$begingroup$
Thanks for the answer but what about the $(z-a)$ part in the Taylor expansion $f(z) = f(a)+f^prime(a)(z-a)$? Substitute $z=1-x$ and $a=1$ gives a $-x$ though?
$endgroup$
– Lepnak
2 hours ago
$begingroup$
Thanks for the answer but what about the $(z-a)$ part in the Taylor expansion $f(z) = f(a)+f^prime(a)(z-a)$? Substitute $z=1-x$ and $a=1$ gives a $-x$ though?
$endgroup$
– Lepnak
2 hours ago
$begingroup$
The Taylor series centred at $0$ is $$f(x)=f(0)+f'(0)x +cdots.$$ Use $f(0)$ and $f'(0)$ from Olivier Oloa's answer and you should get the right answer. In your OP, you are actually expanding $f(x)$ around $0$, not around $1$ (where $f(x)=ln (1-x)$). So $a=0$. By the way, if you substitute $z=1-x$ where $f(z)=ln (1-z)$, you would get $ln(1-(1-x))=ln x$, rather than $ln(1-x)$ (which is what you want). So no need to do this substitution.
$endgroup$
– Minus One-Twelfth
1 hour ago
$begingroup$
The Taylor series centred at $0$ is $$f(x)=f(0)+f'(0)x +cdots.$$ Use $f(0)$ and $f'(0)$ from Olivier Oloa's answer and you should get the right answer. In your OP, you are actually expanding $f(x)$ around $0$, not around $1$ (where $f(x)=ln (1-x)$). So $a=0$. By the way, if you substitute $z=1-x$ where $f(z)=ln (1-z)$, you would get $ln(1-(1-x))=ln x$, rather than $ln(1-x)$ (which is what you want). So no need to do this substitution.
$endgroup$
– Minus One-Twelfth
1 hour ago
$begingroup$
Hmm I think I see what I did wrong. Thanks for all your answers.
$endgroup$
– Lepnak
1 hour ago
$begingroup$
Hmm I think I see what I did wrong. Thanks for all your answers.
$endgroup$
– Lepnak
1 hour ago
add a comment |
$begingroup$
$$y=ln(1-x)$$
$$y'=-frac{1}{1-x}=-sum_{n=0}^{infty}x^n$$
so
$$ln(1-x)=-sum_{n=0}^{infty}frac{x^{n+1}}{n+1}=-sum_{n=1}^{infty}frac{x^{n}}{n}$$
$endgroup$
add a comment |
$begingroup$
$$y=ln(1-x)$$
$$y'=-frac{1}{1-x}=-sum_{n=0}^{infty}x^n$$
so
$$ln(1-x)=-sum_{n=0}^{infty}frac{x^{n+1}}{n+1}=-sum_{n=1}^{infty}frac{x^{n}}{n}$$
$endgroup$
add a comment |
$begingroup$
$$y=ln(1-x)$$
$$y'=-frac{1}{1-x}=-sum_{n=0}^{infty}x^n$$
so
$$ln(1-x)=-sum_{n=0}^{infty}frac{x^{n+1}}{n+1}=-sum_{n=1}^{infty}frac{x^{n}}{n}$$
$endgroup$
$$y=ln(1-x)$$
$$y'=-frac{1}{1-x}=-sum_{n=0}^{infty}x^n$$
so
$$ln(1-x)=-sum_{n=0}^{infty}frac{x^{n+1}}{n+1}=-sum_{n=1}^{infty}frac{x^{n}}{n}$$
edited 2 hours ago
answered 2 hours ago
E.H.EE.H.E
16.8k11969
16.8k11969
add a comment |
add a comment |
Lepnak is a new contributor. Be nice, and check out our Code of Conduct.
Lepnak is a new contributor. Be nice, and check out our Code of Conduct.
Lepnak is a new contributor. Be nice, and check out our Code of Conduct.
Lepnak is a new contributor. Be nice, and check out our Code of Conduct.
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3193068%2ftaylor-expansion-of-ln1-x%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown