Peregrinatio Compostellana

Multi tool use

Itinera Peregrinationis Compostellanae
Peregrinatio Compostellana[1], una ex maioribus peregrinationum christianarum est. Alii peregrini Hierosolymam et Romam eunt, necnon in alia loca.
Peregrini iter faciunt ad finem terrae, ad ultimum Occidentem (in Gallaecia, provincia Hispaniae). In urbe Compostella (vulgo Santiago de Compostela; etymologia "composta tell[ur]a") requiescit corpus sancti Iacobi apostoli. Eum venerantur, sollemniter in die festo eius 25 Iulii. et insolito modo quando hic dies festus etiam dominica dies est (in annis "sanctis" dictis).
Permulta sunt testimonia historica de peregrinatione ad Compostellam. Praecipuum monumentum est Codex Calixtinus (a.D. 1140).
Variae viae ad Compostellam a peregrinis sequuntur. In Hispania, principalis "Via Francogallica" dicta est. In ea convergunt quattuor viae:
Via Turonensis (a Lutetia, per Turonem et Pictavium)
Via Lemovicensis (a loco Vézelay vulgo dictus, per Lemovicum et Petricordium)
Via Podiensis (a loco Le-Puy-en-Velay vulgo dictus, per Moyssacum)
Via Tolosana vel Arelatensis (ab Arelate, per Tolosam)
Aliae viae innectuntur in his quattuor viis. E.g., via Gebennensis ducit a Genava ad Podium, dein "via Podiensis" appellata est.
Notae |
↑ google Peregrinatio compostellana. Wallfarth und Weegweiser zu dem fernen S. Jacob ... von Christophorus Guntzinger
Bibliographia |
- Guillermo Fernando Arquero Caballero, "El Liber peregrinationis como fuente para la historia del camino de Santiago y de las sociedades medievales del Norte peninsular" apud codexcalixtinus.es
- Klaus Herbers, Der Jakobsweg: mit einem mittelalterlichen Pilgerführer unterwegs nach Santiago de Compostela. Tubingae: Narr, 1986. ISBN 3-87808-312-2
Iter pro peregrinis ad Compostellam
secundum Aimericum Picaudum
Iter Aragonicum: Canfrancus → Iacca → Osturiz → Mons Reellus → Pons Reginae
Iter Gallicum: Runcievallis → Biscaerlus → Ressogna → Pampilona → Stella → Pons Reginae → Arcus → Grugnus → Naiera → Belfuratus → Altaporca → Burgi → Castrum Sorericum → Pons Fiterii → Frumesta → Karrionus → Sanctus Facundus → Manxilla → Legio → Orgeba → Asturica Augusta → Raphanellus → Siccamolina → Pons Ferratus → Carcavellus → Portus Februarius → Pons Mineae → Sala Reginae → Compostella.
YOb1,Z5
Popular posts from this blog
Tabula multilinguis Rosettana in Museo Britannico ostenditur. Tabula Rosettana, [1] etiam titulo OGIS 90 agnita, est stela decreto de rebus sacris in Aegypto anno 196 a.C.n. lato inscripta. Tabula iuxta Rosettam Aegypti, urbem in delta Nili et ad oram maris Mediterranei iacentem, anno 1799 a milite Francico reperta est. Inventio stelae, linguis duabus scripturisque tribus inscriptae, eruditis Instituti Aegypti statim nuntiata est; ibi enim iussu imperatoris Napoleonis eruditi omnium scientiarum (sub aegide Commissionis Scientiarum et Artium) properaverant cum expeditione Francica. Qua a Britannis mox debellata, tabula Rosettana Londinium missa hodie apud Museum Britannicum iacet. Textus Graecus cito lectus interpretationi textuum Aegyptiorum (in formis hieroglyphica et demotica expressorum) gradatim adiuvit. Denique textum plene interpretatus est Ioannes Franciscus Champollion. Ab opere eruditorum cumulativo coepit hodiernus scripturae hieroglyphicae linguaeque Aegyptiae a...
1
$begingroup$
This is what I mean as document text image: I want to label the texts in image as separate blocks and my model should detect these labels as classes. NOTE: This is how the end result should be like: The labels like Block 1, Block 2, Block 3,.. should be Logo, Title, Date,.. Others, etc. Work done: First approach : I tried to implement this method via Object Detection, it didn't work. It didn't even detect any text. Second approach : Then I tried it using PixelLink. As this model is build for scene text detection, it detected each and every text in the image. But this method can detect multiple lines of text if the threshold values are increased. But I have no idea how do I add labels to the text blocks. PIXEL_CLS_WEIGHT_all_ones = 'PIXEL_CLS_WEIGHT_all_ones' PIXEL_C...
1
$begingroup$
I have this LSTM model model = Sequential() model.add(Masking(mask_value=0, input_shape=(timesteps, features))) model.add(LSTM(100, dropout=0.2, recurrent_dropout=0.2, return_sequences=False)) model.add(Dense(features, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) and shapes X_train (21, 11, 5), y_train (21, 5) . Each timestep is represented by 5 features and return_sequences is set to False because I want to predict one 5D array (the next timestep) for each input sequence of 11 timesteps. I get the error ValueError: y_true and y_pred have different number of output (5!=1) If I reshape the data as X_train (21, 11, 5), y_train (21, 1, 5) instead I get the error ValueError: Inva...