Iniquitas reditus

Multi tool use

-2
Latinitas huius rei dubia est. Corrige si potes. Vide {{latinitas}}.

Index coefficientis Giniani anno 2013.
Iniquitas reditus est res oeconomiae quod iniquitas reditus ex capitalismo causa pauputatis pro muliti populi contra democratiam.
Carolus Marx causa iniquitatis accumulationem capitalem infinitam putavit.[1] Deinde Thomas Piketty theoriam curvus Kuznets falusam ex ideologia capitalista putavit et causa iniquitatis socialis et intuitionem cogitat.[2]
Et societas organizatiove internationalis, et programma promotorium Nationum Unitarum et proposita progressus durabilis[3] hanc iniquitatem allevare postulat.
Nexus interni
- Anticapitalismus
- Forum mundi universi
- Globalizatio
- Paradisus fiscalis
- Usurpatio
- Compilatio Panamensis
Notae |
↑ Carolus Marx, Das Kapital, Volumen I
↑ Le Capital au XXIe siècle, Introductio et Sectio III
↑ Proposita progressus durabilis, Sectio I
AaOWZr0 8DPGpDqN7lCy nMfQndgP YMuq5Zv5qfvN 2aD7zbzcZN9LAJ7 xxl,q3UyLnRxIkYwJwi5,A7W,xV,ZTtMz,q5PZ2
Popular posts from this blog
Chemia Organometallica , disciplina quae partes chemiae organicae inorganicaeque complectitur; moleculas noscit quae vincula covalentes inter carbonium et metallum aut semimetallum continent. Index 1 Exempla 2 Proprietas chemicarum organometallicarum 3 Ramae chemiae organometallicae 4 Fons Exempla | Vitaminum B12 in corpore humano est chemica organometallica, sed non omnes moleculae metallum habentes sunt organometallicae, solum eae in quo vinculum inter carbonium et metallum est covalentum. Ergo, quamquam natriumacetatum (H 3 C-COONa, sal natrii acoris aceti) partem metallicum et partem organicam CH 3 habet, molecula ipsa non est metallorganica, quia vinculum natrii est ionicum et non est inter natrium et carbonium. Similiter chlorophyll et haemoglobinum non sunt chemicae metallorganicae. Etiam hodie, chemica Grignardi qui magnesium continent sunt potior pro synthesis moleculae organicae. Pro harum chemicarum inventa Victori Grignard Donatium No...
1
$begingroup$
I have this LSTM model model = Sequential() model.add(Masking(mask_value=0, input_shape=(timesteps, features))) model.add(LSTM(100, dropout=0.2, recurrent_dropout=0.2, return_sequences=False)) model.add(Dense(features, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) and shapes X_train (21, 11, 5), y_train (21, 5) . Each timestep is represented by 5 features and return_sequences is set to False because I want to predict one 5D array (the next timestep) for each input sequence of 11 timesteps. I get the error ValueError: y_true and y_pred have different number of output (5!=1) If I reshape the data as X_train (21, 11, 5), y_train (21, 1, 5) instead I get the error ValueError: Inva...
1
$begingroup$
This is what I mean as document text image: I want to label the texts in image as separate blocks and my model should detect these labels as classes. NOTE: This is how the end result should be like: The labels like Block 1, Block 2, Block 3,.. should be Logo, Title, Date,.. Others, etc. Work done: First approach : I tried to implement this method via Object Detection, it didn't work. It didn't even detect any text. Second approach : Then I tried it using PixelLink. As this model is build for scene text detection, it detected each and every text in the image. But this method can detect multiple lines of text if the threshold values are increased. But I have no idea how do I add labels to the text blocks. PIXEL_CLS_WEIGHT_all_ones = 'PIXEL_CLS_WEIGHT_all_ones' PIXEL_C...