Iesus cruci adfixus; saeculo sexto decimo ineunte.
Dies Passionis Domini, vel accuratius Feria VI in Passione Domini vel etiam (Feria VI in) Parasceve[1], est dies quo Christiani mortis Domini Iesu cruci affixi recordantur.
Hic dies non solum feria religiosa Christiana est, sed etiam apud multos populos Christianos feria est rei publicae.
In Ecclesia Catholica horis postmeridianis, et quidem circa horam tertiam, nisi ex ratione pastorali tardior hora seligatur, fit celebratio Passionis Domini, constans ex tribus partibus, nempe ex liturgia verbi, adoratione Crucis et sacra Communione.[2]
Fideles etiam ritum Viae Crucis agunt.
Index
1Notae
2Alia coepta Vici
3Nexus interni
4Nexus externus
Notae |
↑Grotefend et The Saint Lawrence Press et alibi
↑Missale Romanum 2002
Alia coepta Vici |
Vicimedia Communia plura habent quae ad Diem Passionis Domini spectant.
Nexus interni
Quadragesima
Triduum Sacrum
Nexus externus |
Decretum generale MAXIMA REDEMPTIONIS (1955) (liturgiae Hebdomadae Sanctae ordininis instauratio)
Missale Romanum (3a. ed.) apud clerus.org
Triduum Sacrum Paschale
Dies Cenae Domini - Dies Passionis Domini - Sabbatum Sanctum - Dominica Resurrectionis Domini
Chemia Organometallica , disciplina quae partes chemiae organicae inorganicaeque complectitur; moleculas noscit quae vincula covalentes inter carbonium et metallum aut semimetallum continent. Index 1 Exempla 2 Proprietas chemicarum organometallicarum 3 Ramae chemiae organometallicae 4 Fons Exempla | Vitaminum B12 in corpore humano est chemica organometallica, sed non omnes moleculae metallum habentes sunt organometallicae, solum eae in quo vinculum inter carbonium et metallum est covalentum. Ergo, quamquam natriumacetatum (H 3 C-COONa, sal natrii acoris aceti) partem metallicum et partem organicam CH 3 habet, molecula ipsa non est metallorganica, quia vinculum natrii est ionicum et non est inter natrium et carbonium. Similiter chlorophyll et haemoglobinum non sunt chemicae metallorganicae. Etiam hodie, chemica Grignardi qui magnesium continent sunt potior pro synthesis moleculae organicae. Pro harum chemicarum inventa Victori Grignard Donatium No...
1
$begingroup$
I have this LSTM model model = Sequential() model.add(Masking(mask_value=0, input_shape=(timesteps, features))) model.add(LSTM(100, dropout=0.2, recurrent_dropout=0.2, return_sequences=False)) model.add(Dense(features, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) and shapes X_train (21, 11, 5), y_train (21, 5) . Each timestep is represented by 5 features and return_sequences is set to False because I want to predict one 5D array (the next timestep) for each input sequence of 11 timesteps. I get the error ValueError: y_true and y_pred have different number of output (5!=1) If I reshape the data as X_train (21, 11, 5), y_train (21, 1, 5) instead I get the error ValueError: Inva...
1
$begingroup$
This is what I mean as document text image: I want to label the texts in image as separate blocks and my model should detect these labels as classes. NOTE: This is how the end result should be like: The labels like Block 1, Block 2, Block 3,.. should be Logo, Title, Date,.. Others, etc. Work done: First approach : I tried to implement this method via Object Detection, it didn't work. It didn't even detect any text. Second approach : Then I tried it using PixelLink. As this model is build for scene text detection, it detected each and every text in the image. But this method can detect multiple lines of text if the threshold values are increased. But I have no idea how do I add labels to the text blocks. PIXEL_CLS_WEIGHT_all_ones = 'PIXEL_CLS_WEIGHT_all_ones' PIXEL_C...