Eustathius Thessalonicensis

Multi tool use
Vide etiam paginam discretivam: Eustathius (discretiva)

Eustathius Thessalonicensis
Res apud Vicidata repertae:
Nativitas:
12. century;
Constantinopolis mediaevalisObitus:
1198;
ThessalonicaPatria:
Imperium Romanum Orientale
Officium
Munus: sacerdos, Rerum gestarum scriptor, Scriptor, mythographus
Consociatio
Religio: Orthodox Christianity
Memoria
Sanctus (feriae die 20 Septembris)
Eustathius Thessalonicensis (Graece Εὐστάθιος ὁ τῆς Θεσσαλονίκης; mortuus 1198) fuit archiepiscopus Thessalonicensis, eruditus etiam et rerum gestarum scriptor Byzantinus.
Opera |
- Commentarii in Iliadem et Odysseam
- De capta Thessalonica liber
- Epistulae
Bibliographia |
- Editiones operum variorum
Foteini Kolovou, ed., Die Briefe des Eustathios von Thessalonike: Einleitung, Regesten, Text, Indizes. Monaci, 2006 (Beiträge zur Altertumskunde, 239)
- Peter Wirth, ed., Eustathii Thessalonicensis Opera minora magnam partem inedita. Berolini: Walter de Gruyter, 2000 (Corpus Fontium Historiae Byzantinae, Series Berolinensis, 32)
- Eruditio
- Michael Angold, "Eustathius of Thessalonica" in Michael Angold, Church and Society in Byzantium Under the Comneni, 1081–1261 (Cantabrigiae: Cambridge University Press, 1995. ISBN 9780521264327) pp. 179-196 textus venalis
- Maria Elisabetta Colonna, Gli storici Bizantini dal IV al XV secolo (Napoli: Armanni, 1956) pp. 45-46
- Aliae encyclopaediae
- Leopold Cohn, "Eustathios. 18" in Eustathius Thessalonicensis. In: Paulys Realencyclopädie der classischen Altertumswissenschaft (RE). Band {{{1}}}, Stuttgart {{{1}}}, Sp. {{{2}}}. vol. 6 pars i (1907) coll. 1452–1489
.mw-parser-output .stipula{padding:3px;background:#F7F8FF;border:1px solid grey;margin:auto}.mw-parser-output .stipula td.cell1{background:transparent;color:white}

|
Haec stipula ad biographiam spectat. Amplifica, si potes!
|
90SH,8Tlbd56MgR Es2OUU,p,29YqN4dBzTpysIU3,vtnm2XHr
Popular posts from this blog
Chemia Organometallica , disciplina quae partes chemiae organicae inorganicaeque complectitur; moleculas noscit quae vincula covalentes inter carbonium et metallum aut semimetallum continent. Index 1 Exempla 2 Proprietas chemicarum organometallicarum 3 Ramae chemiae organometallicae 4 Fons Exempla | Vitaminum B12 in corpore humano est chemica organometallica, sed non omnes moleculae metallum habentes sunt organometallicae, solum eae in quo vinculum inter carbonium et metallum est covalentum. Ergo, quamquam natriumacetatum (H 3 C-COONa, sal natrii acoris aceti) partem metallicum et partem organicam CH 3 habet, molecula ipsa non est metallorganica, quia vinculum natrii est ionicum et non est inter natrium et carbonium. Similiter chlorophyll et haemoglobinum non sunt chemicae metallorganicae. Etiam hodie, chemica Grignardi qui magnesium continent sunt potior pro synthesis moleculae organicae. Pro harum chemicarum inventa Victori Grignard Donatium No...
1
$begingroup$
I have this LSTM model model = Sequential() model.add(Masking(mask_value=0, input_shape=(timesteps, features))) model.add(LSTM(100, dropout=0.2, recurrent_dropout=0.2, return_sequences=False)) model.add(Dense(features, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) and shapes X_train (21, 11, 5), y_train (21, 5) . Each timestep is represented by 5 features and return_sequences is set to False because I want to predict one 5D array (the next timestep) for each input sequence of 11 timesteps. I get the error ValueError: y_true and y_pred have different number of output (5!=1) If I reshape the data as X_train (21, 11, 5), y_train (21, 1, 5) instead I get the error ValueError: Inva...
1
$begingroup$
This is what I mean as document text image: I want to label the texts in image as separate blocks and my model should detect these labels as classes. NOTE: This is how the end result should be like: The labels like Block 1, Block 2, Block 3,.. should be Logo, Title, Date,.. Others, etc. Work done: First approach : I tried to implement this method via Object Detection, it didn't work. It didn't even detect any text. Second approach : Then I tried it using PixelLink. As this model is build for scene text detection, it detected each and every text in the image. But this method can detect multiple lines of text if the threshold values are increased. But I have no idea how do I add labels to the text blocks. PIXEL_CLS_WEIGHT_all_ones = 'PIXEL_CLS_WEIGHT_all_ones' PIXEL_C...