Samuel Pepys

Multi tool use

Samuel Pepys
Res apud Vicidata repertae:
Nativitas:
23 Februarii 1633;
Urbs LondiniensisObitus:
26 Maii 1703;
ClaphamPatria:
Anglia
Officium
Officium: Legatus apud Parlamentum Anglicum, president of the Royal Society
Munus: Politicus, Scriptor, diarist, justice of the peace
Consociatio
Religio: Anglicanismus
Familia
Coniunx: Elizabeth Pepys
Memoria
Laurae: Fellow of the Royal Society
Sepultura: St Olave Hart Street

Samuel Pepys (anno 1666), ab Ioannes Hayls pictus. National Portrait Gallery Londinii.
Samuel Pepys[1] [piːps] (natus Londinii die 23 Februarii 1633; mortuus in Clapham iuxta Londonium die 26 Maii 1703) fuit secretarius in Anglico classis ministerio, Regalis Societatis Londiniensis praeses, et legatus populi in Parlamento Anglico. Nobis tamen magis notus est ut ephemeridos scriptor, Carolo Rege II regnante.
Bibliographia |
- Ollard, Richard. 1974. Pepys: A Biography. Londinii: Hodder & Stoughton. ISBN 0-19-281466-4.
- Tomalin, Claire. 2002 Samuel Pepys: The Unequalled Self. Londinii: Viking/Penguin. ISBN 0-670-88568-1.
Nexus externi |
- Pepys diarium apud Vicifontem
http://www.gutenberg.org/etext/3331 Pepys diarium apud Propositum Gutenberg
- Pagina Samuel Pepys apud BBC dicata
- De Samuele Pepys apud Regalis Societatis Londiniensis archivum
Notae |
↑ 1686: Francisci Willughbeii armigeri De historia piscium libri quatuor, frontispicio:
- Francisci Willoughby Icthyographia ad amplissimum virum Dnum Samuelem Pepys, praesidem Soc. Reg. Londinensis, concilium, et socios ejusdem. Sumptibus Societatis Regalis Londinensis. 1685.
.mw-parser-output .stipula{padding:3px;background:#F7F8FF;border:1px solid grey;margin:auto}.mw-parser-output .stipula td.cell1{background:transparent;color:white}

|
Haec stipula ad scriptorem spectat. Amplifica, si potes!
|
EUkvisHv3N3okgJs TL9QGEyWeMcK7rGuKv40e BMHik,5zuqCbU7C2KYgYC htkM4dm0AP8T OXlov TFa9
Popular posts from this blog
Tabula multilinguis Rosettana in Museo Britannico ostenditur. Tabula Rosettana, [1] etiam titulo OGIS 90 agnita, est stela decreto de rebus sacris in Aegypto anno 196 a.C.n. lato inscripta. Tabula iuxta Rosettam Aegypti, urbem in delta Nili et ad oram maris Mediterranei iacentem, anno 1799 a milite Francico reperta est. Inventio stelae, linguis duabus scripturisque tribus inscriptae, eruditis Instituti Aegypti statim nuntiata est; ibi enim iussu imperatoris Napoleonis eruditi omnium scientiarum (sub aegide Commissionis Scientiarum et Artium) properaverant cum expeditione Francica. Qua a Britannis mox debellata, tabula Rosettana Londinium missa hodie apud Museum Britannicum iacet. Textus Graecus cito lectus interpretationi textuum Aegyptiorum (in formis hieroglyphica et demotica expressorum) gradatim adiuvit. Denique textum plene interpretatus est Ioannes Franciscus Champollion. Ab opere eruditorum cumulativo coepit hodiernus scripturae hieroglyphicae linguaeque Aegyptiae a...
1
$begingroup$
This is what I mean as document text image: I want to label the texts in image as separate blocks and my model should detect these labels as classes. NOTE: This is how the end result should be like: The labels like Block 1, Block 2, Block 3,.. should be Logo, Title, Date,.. Others, etc. Work done: First approach : I tried to implement this method via Object Detection, it didn't work. It didn't even detect any text. Second approach : Then I tried it using PixelLink. As this model is build for scene text detection, it detected each and every text in the image. But this method can detect multiple lines of text if the threshold values are increased. But I have no idea how do I add labels to the text blocks. PIXEL_CLS_WEIGHT_all_ones = 'PIXEL_CLS_WEIGHT_all_ones' PIXEL_C...
1
$begingroup$
I have this LSTM model model = Sequential() model.add(Masking(mask_value=0, input_shape=(timesteps, features))) model.add(LSTM(100, dropout=0.2, recurrent_dropout=0.2, return_sequences=False)) model.add(Dense(features, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) and shapes X_train (21, 11, 5), y_train (21, 5) . Each timestep is represented by 5 features and return_sequences is set to False because I want to predict one 5D array (the next timestep) for each input sequence of 11 timesteps. I get the error ValueError: y_true and y_pred have different number of output (5!=1) If I reshape the data as X_train (21, 11, 5), y_train (21, 1, 5) instead I get the error ValueError: Inva...