Calendarium Mayense

Multi tool use

-4
(corrigenda) Latinitas huius paginae corrigenda est. Si potes, corrige vel rescribe. Vide {{latinitas}}.

Cyclus dierum 260. Codex Tro-Cortesianus ff. 75-76 (Museum Americae Matritense), cf. Codex Fejérváry-Mayer f. 1
Calendarium Mayense est ratio fastiorum gentium Mayensi in usu in praecolumbiana mesoamerica et in multis civitatibus hodiernis in montibus Guatimalis[1] et Veracruz et Oaxaca et Chiapas in Mexico.[2] Summa capita calendari Mayensi sunt nixae ratione in usu communiter per omnes regionis minime etiam abhinc 500 a.C.n.. Calendar aspectus participat cum aliis prioribus humanis cultibus mesoamericanis, sicut Zapotec et Olmec contemporaneiis vel seriis sicut calendaria Mixteca et Azteca. Calendarium Mayensis consistit ex pluribus diversis vicibus vel computationibus. Notum est computatio 260 dierum ad eruditas ut Tzolkin vel Tzolk'in. Tzolkin coniungitur cum obscuro anno solaris 365-dierum notus ut Haab' ad formandum congruentem orbem qui duret 52 Haab', appellatus Calendarium Rotundum. Calendarium Rotundum in usu est attamen ab manibus multis montanis guatemantecis.
Calendarium alterum in usu erat ut investiget periodum longiore temporis et ad inscriptionem dierum(i.e., exprimente quando eventum occurit in necessitudine alteris). Haec est Summa Longa. Est summa dierum abhinc initium fabulosum. Secundum coniungtionem inter Summa Longam et Calendaria Occidentes et noscitur apud plerumque indagatorum Mayensis( notus ut Goodman-Martinez-Thompson, vel GMT, coniungtum). Hoc locus inceptus aequivalet 11 Augusti in Calendario Gregori proleptico vel 6 Septembris Calendario Iuliano.[3]
Notae |
↑ Tedlock, Barbara, Time and the Highland Maya Revised edition (1992 Page 1) "Scores of indigenous Guatemalan communities, principally those speaking the Mayan languages known as Ixil, Mam, Pokomchí and Quiché, keep the 260-day cycle and (in many cases) the ancient solar cycle as well (chapter 4)."
↑ Miles, Susanna W, "An Analysis of the Modern Middle American Calendars: A Study in Conservation." In Acculturation in the Americas. Edited by Sol Tax, p. 273. Chicago: University of Chicago Press, 1952.
↑ "Maya Calendar Origins: Monuments, Mythistory, and the Materialization of Time"
Bibliographia |
- Munro S. Edmonson, The Book of the Year: Middle American Calendrical Systems. Urbe Lacus Salsi: University of Utah Press, 1988. ISBN 0-87480-288-1
QOcz,CKdH
Popular posts from this blog
Tabula multilinguis Rosettana in Museo Britannico ostenditur. Tabula Rosettana, [1] etiam titulo OGIS 90 agnita, est stela decreto de rebus sacris in Aegypto anno 196 a.C.n. lato inscripta. Tabula iuxta Rosettam Aegypti, urbem in delta Nili et ad oram maris Mediterranei iacentem, anno 1799 a milite Francico reperta est. Inventio stelae, linguis duabus scripturisque tribus inscriptae, eruditis Instituti Aegypti statim nuntiata est; ibi enim iussu imperatoris Napoleonis eruditi omnium scientiarum (sub aegide Commissionis Scientiarum et Artium) properaverant cum expeditione Francica. Qua a Britannis mox debellata, tabula Rosettana Londinium missa hodie apud Museum Britannicum iacet. Textus Graecus cito lectus interpretationi textuum Aegyptiorum (in formis hieroglyphica et demotica expressorum) gradatim adiuvit. Denique textum plene interpretatus est Ioannes Franciscus Champollion. Ab opere eruditorum cumulativo coepit hodiernus scripturae hieroglyphicae linguaeque Aegyptiae a...
1
$begingroup$
This is what I mean as document text image: I want to label the texts in image as separate blocks and my model should detect these labels as classes. NOTE: This is how the end result should be like: The labels like Block 1, Block 2, Block 3,.. should be Logo, Title, Date,.. Others, etc. Work done: First approach : I tried to implement this method via Object Detection, it didn't work. It didn't even detect any text. Second approach : Then I tried it using PixelLink. As this model is build for scene text detection, it detected each and every text in the image. But this method can detect multiple lines of text if the threshold values are increased. But I have no idea how do I add labels to the text blocks. PIXEL_CLS_WEIGHT_all_ones = 'PIXEL_CLS_WEIGHT_all_ones' PIXEL_C...
1
$begingroup$
I have this LSTM model model = Sequential() model.add(Masking(mask_value=0, input_shape=(timesteps, features))) model.add(LSTM(100, dropout=0.2, recurrent_dropout=0.2, return_sequences=False)) model.add(Dense(features, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) and shapes X_train (21, 11, 5), y_train (21, 5) . Each timestep is represented by 5 features and return_sequences is set to False because I want to predict one 5D array (the next timestep) for each input sequence of 11 timesteps. I get the error ValueError: y_true and y_pred have different number of output (5!=1) If I reshape the data as X_train (21, 11, 5), y_train (21, 1, 5) instead I get the error ValueError: Inva...