Nativitas: 14 Decembris 1944; Brünnau Patria: Germania
Officium
Officium: Socius Concilii Federalis Germanici Munus: Politicus, miller
Consociatio
Factio: Christiana Socialis Unio in Bavaria
Memoria
Laurae: Bavarian Order of Merit, Bayerische Verfassungsmedaille in Gold, Commander's Cross of the Order of Merit of the Federal Republic of Germany, Q1226703
Michael Glos
Michael Glos (natus 14 Decembris 1944 oppido Brünnau) rerum politicarum peritus Germanicus et sodalis Christianae Socialis Unionis in Bavaria est.
Index
1Iuventus et munus
2Cursus honorum
3Nexus externi
4Notae
Iuventus et munus |
Post scholam finitam Glos tirocinium pistoris fecit. Anno 1967 probationem magistri huius artificii accepit. Anno 1968 molas patris regere coepit.
Cursus honorum |
Glos ab anno 1970 sodalis CSU et ab anno 1976 legatus Dietae Foederalis Germaniae est. 22 Novembris 2005 ab Angela Merkel (CDU) nova cancellaria Germaniae Administer Foederalis Oeconomiae nominatus est. Hoc officium ad 9 Februarii 2009 duxit, cum sua sponte propter aetatem provectam a magistratu se recessit. Tamen 27 Septembris huius anni iterum in Dietam Foederalem electus est. Anno 2013 non iam candidatus parlamenti Germanici fuit[1].
Nexus externi |
Vicimedia Communia plura habent quae ad Michael Glos spectant.
Pagina personalis (Lingua Theodisca)
Curriculum vitae in pagina Dietae Foederalis (Lingua Theodisca)
Notae |
↑Focus die 21 Iunii 2013
Consilium Ministrorum Merkel I (22 Novembris 2005 - 27 Octobris 2009)
Angela Merkel (CDU) |
Francus Gualterus Steinmeier (SPD) |
Franciscus Müntefering (SPD, ad 21 Novembris 2007)
Olaus Scholz (SPD, ab 21 Novembris 2007) |
Volfgangus Schäuble (CDU) |
Brigitta Zypries (SPD) |
Petrus Steinbrück (SPD) |
Michael Glos (CSU, ad 10 Februarii 2009) |
Carolus Theodorus zu Guttenberg (CSU, ab 10 Februarii 2009) |
Horatius Seehofer (CSU, ad 27 Octobris 2008) |
Ilse Aigner (CSU, ab 31 Octobris 2008) |
Franciscus Josephus Jung (CDU) |
Ursula de Leyen (CDU) |
Ulla Schmidt (SPD) |
Volfgangus Tiefensee (SPD) |
Sigmarius Gabriel (SPD) |
Annetta Schavan (CDU) |
Heidemaria Wieczorek-Zeul (SPD)
Thomas de Maizière (CDU)
Administri Foederales Oeconomiae
Ludovicus Erhard (CDU) |Curtius Schmücker (CDU) |Carolus Schiller (SPD) |Helimutus Schmidt (SPD) |Ioannes Friderichs (FDP) |Otto Comes Lambsdorff (FDP) |Manfredus Lahnstein (SPD) |Otto Comes Lambsdorff (FDP) |Martinus Bangemann (FDP) |Helimutus Haussmann (FDP) |Georgius Möllemann (FDP) |Gunterus Rexrodt (FDP) |Werner Müller (nullius factionis) |Gualphangus Clement (SPD) |Michael Glos (CSU) |
Carolus Theodorus zu Guttenberg (CSU) |Rainer Brüderle (FDP) |Philippus Rösler (FDP) |Sigmarius Gabriel (SPD) |Brigitta Zypries (SPD) | Petrus Altmaier (CDU)
Tabula multilinguis Rosettana in Museo Britannico ostenditur. Tabula Rosettana, [1] etiam titulo OGIS 90 agnita, est stela decreto de rebus sacris in Aegypto anno 196 a.C.n. lato inscripta. Tabula iuxta Rosettam Aegypti, urbem in delta Nili et ad oram maris Mediterranei iacentem, anno 1799 a milite Francico reperta est. Inventio stelae, linguis duabus scripturisque tribus inscriptae, eruditis Instituti Aegypti statim nuntiata est; ibi enim iussu imperatoris Napoleonis eruditi omnium scientiarum (sub aegide Commissionis Scientiarum et Artium) properaverant cum expeditione Francica. Qua a Britannis mox debellata, tabula Rosettana Londinium missa hodie apud Museum Britannicum iacet. Textus Graecus cito lectus interpretationi textuum Aegyptiorum (in formis hieroglyphica et demotica expressorum) gradatim adiuvit. Denique textum plene interpretatus est Ioannes Franciscus Champollion. Ab opere eruditorum cumulativo coepit hodiernus scripturae hieroglyphicae linguaeque Aegyptiae a...
1
$begingroup$
This is what I mean as document text image: I want to label the texts in image as separate blocks and my model should detect these labels as classes. NOTE: This is how the end result should be like: The labels like Block 1, Block 2, Block 3,.. should be Logo, Title, Date,.. Others, etc. Work done: First approach : I tried to implement this method via Object Detection, it didn't work. It didn't even detect any text. Second approach : Then I tried it using PixelLink. As this model is build for scene text detection, it detected each and every text in the image. But this method can detect multiple lines of text if the threshold values are increased. But I have no idea how do I add labels to the text blocks. PIXEL_CLS_WEIGHT_all_ones = 'PIXEL_CLS_WEIGHT_all_ones' PIXEL_C...
1
$begingroup$
I have this LSTM model model = Sequential() model.add(Masking(mask_value=0, input_shape=(timesteps, features))) model.add(LSTM(100, dropout=0.2, recurrent_dropout=0.2, return_sequences=False)) model.add(Dense(features, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) and shapes X_train (21, 11, 5), y_train (21, 5) . Each timestep is represented by 5 features and return_sequences is set to False because I want to predict one 5D array (the next timestep) for each input sequence of 11 timesteps. I get the error ValueError: y_true and y_pred have different number of output (5!=1) If I reshape the data as X_train (21, 11, 5), y_train (21, 1, 5) instead I get the error ValueError: Inva...