Integral check. Is partial fractions the only way?












3












$begingroup$


I'm getting a different answer from wolfram and I have no idea where. I have to integrate:



$$int_0^1 frac{xdx}{(2x+1)^3}$$



Is partial fractions the only way?



So evaluating the fraction first:



$$frac{x}{(2x+1)^3} = frac{A}{2x+1} + frac{B}{(2x+1)^2} + frac{C}{(2x+1)^3}$$



$$x = A(2x+1)^2 + B(2x+1) + C$$



$$x = A(4x^2 + 4x + 1) + 2Bx + B + C$$



$$x = 4Ax^2 + 4Ax + A + 2Bx + B + C$$



$$x = x^2(4A) + x(4A+2B) + A + B + C$$



$4A = 0$ and $4A+2B = 1$ and $A + B + C = 0$ so $A = 0$ and $B=frac{1}{2}$ and $C = frac{-1}{2}$



Is the partial fraction part right?



So then I get:



$$int_0^1 frac{xdx}{(2x+1)^3} = int_0^1 frac{dx}{(2(2x+1)^2)} - int_0^1 frac{dx}{2(2x+1)^3}$$



for both, using $u = 2x+1$ and $frac{du}{dx} = 2$ and $du = 2dx$ and $frac{du}{2} = dx$,
$$frac{1}{4} int frac{du}{u^2} - frac{1}{4} int frac{du}{u^3}$$



$$ = [frac{1}{4} - u^{-1} - frac{1}{4} cdot frac{1}{-2} u^{-2} ]_1^3$$



I'm going the route of changing the limits to the new u and since $u = 2x+1$, when $x = 0, u = 1$ and when $x = 1, u = 3$. Is this the right path?



finally I get



$$[frac{-1}{4}u^{-1} + frac{1}{8}u^{-2} ]_1^3$$



I plug in numbers but I get a different answer than wolfram...










share|cite|improve this question











$endgroup$












  • $begingroup$
    I can't see any mistake in your work. What's the answer given by wolfram?
    $endgroup$
    – Thomas Shelby
    yesterday










  • $begingroup$
    They have 1/18 as the answer @ThomasShelby
    $endgroup$
    – Jwan622
    yesterday






  • 2




    $begingroup$
    Please recheck your calculations. I'm getting $frac1 {18} $ when I substitute the numbers.
    $endgroup$
    – Thomas Shelby
    yesterday
















3












$begingroup$


I'm getting a different answer from wolfram and I have no idea where. I have to integrate:



$$int_0^1 frac{xdx}{(2x+1)^3}$$



Is partial fractions the only way?



So evaluating the fraction first:



$$frac{x}{(2x+1)^3} = frac{A}{2x+1} + frac{B}{(2x+1)^2} + frac{C}{(2x+1)^3}$$



$$x = A(2x+1)^2 + B(2x+1) + C$$



$$x = A(4x^2 + 4x + 1) + 2Bx + B + C$$



$$x = 4Ax^2 + 4Ax + A + 2Bx + B + C$$



$$x = x^2(4A) + x(4A+2B) + A + B + C$$



$4A = 0$ and $4A+2B = 1$ and $A + B + C = 0$ so $A = 0$ and $B=frac{1}{2}$ and $C = frac{-1}{2}$



Is the partial fraction part right?



So then I get:



$$int_0^1 frac{xdx}{(2x+1)^3} = int_0^1 frac{dx}{(2(2x+1)^2)} - int_0^1 frac{dx}{2(2x+1)^3}$$



for both, using $u = 2x+1$ and $frac{du}{dx} = 2$ and $du = 2dx$ and $frac{du}{2} = dx$,
$$frac{1}{4} int frac{du}{u^2} - frac{1}{4} int frac{du}{u^3}$$



$$ = [frac{1}{4} - u^{-1} - frac{1}{4} cdot frac{1}{-2} u^{-2} ]_1^3$$



I'm going the route of changing the limits to the new u and since $u = 2x+1$, when $x = 0, u = 1$ and when $x = 1, u = 3$. Is this the right path?



finally I get



$$[frac{-1}{4}u^{-1} + frac{1}{8}u^{-2} ]_1^3$$



I plug in numbers but I get a different answer than wolfram...










share|cite|improve this question











$endgroup$












  • $begingroup$
    I can't see any mistake in your work. What's the answer given by wolfram?
    $endgroup$
    – Thomas Shelby
    yesterday










  • $begingroup$
    They have 1/18 as the answer @ThomasShelby
    $endgroup$
    – Jwan622
    yesterday






  • 2




    $begingroup$
    Please recheck your calculations. I'm getting $frac1 {18} $ when I substitute the numbers.
    $endgroup$
    – Thomas Shelby
    yesterday














3












3








3





$begingroup$


I'm getting a different answer from wolfram and I have no idea where. I have to integrate:



$$int_0^1 frac{xdx}{(2x+1)^3}$$



Is partial fractions the only way?



So evaluating the fraction first:



$$frac{x}{(2x+1)^3} = frac{A}{2x+1} + frac{B}{(2x+1)^2} + frac{C}{(2x+1)^3}$$



$$x = A(2x+1)^2 + B(2x+1) + C$$



$$x = A(4x^2 + 4x + 1) + 2Bx + B + C$$



$$x = 4Ax^2 + 4Ax + A + 2Bx + B + C$$



$$x = x^2(4A) + x(4A+2B) + A + B + C$$



$4A = 0$ and $4A+2B = 1$ and $A + B + C = 0$ so $A = 0$ and $B=frac{1}{2}$ and $C = frac{-1}{2}$



Is the partial fraction part right?



So then I get:



$$int_0^1 frac{xdx}{(2x+1)^3} = int_0^1 frac{dx}{(2(2x+1)^2)} - int_0^1 frac{dx}{2(2x+1)^3}$$



for both, using $u = 2x+1$ and $frac{du}{dx} = 2$ and $du = 2dx$ and $frac{du}{2} = dx$,
$$frac{1}{4} int frac{du}{u^2} - frac{1}{4} int frac{du}{u^3}$$



$$ = [frac{1}{4} - u^{-1} - frac{1}{4} cdot frac{1}{-2} u^{-2} ]_1^3$$



I'm going the route of changing the limits to the new u and since $u = 2x+1$, when $x = 0, u = 1$ and when $x = 1, u = 3$. Is this the right path?



finally I get



$$[frac{-1}{4}u^{-1} + frac{1}{8}u^{-2} ]_1^3$$



I plug in numbers but I get a different answer than wolfram...










share|cite|improve this question











$endgroup$




I'm getting a different answer from wolfram and I have no idea where. I have to integrate:



$$int_0^1 frac{xdx}{(2x+1)^3}$$



Is partial fractions the only way?



So evaluating the fraction first:



$$frac{x}{(2x+1)^3} = frac{A}{2x+1} + frac{B}{(2x+1)^2} + frac{C}{(2x+1)^3}$$



$$x = A(2x+1)^2 + B(2x+1) + C$$



$$x = A(4x^2 + 4x + 1) + 2Bx + B + C$$



$$x = 4Ax^2 + 4Ax + A + 2Bx + B + C$$



$$x = x^2(4A) + x(4A+2B) + A + B + C$$



$4A = 0$ and $4A+2B = 1$ and $A + B + C = 0$ so $A = 0$ and $B=frac{1}{2}$ and $C = frac{-1}{2}$



Is the partial fraction part right?



So then I get:



$$int_0^1 frac{xdx}{(2x+1)^3} = int_0^1 frac{dx}{(2(2x+1)^2)} - int_0^1 frac{dx}{2(2x+1)^3}$$



for both, using $u = 2x+1$ and $frac{du}{dx} = 2$ and $du = 2dx$ and $frac{du}{2} = dx$,
$$frac{1}{4} int frac{du}{u^2} - frac{1}{4} int frac{du}{u^3}$$



$$ = [frac{1}{4} - u^{-1} - frac{1}{4} cdot frac{1}{-2} u^{-2} ]_1^3$$



I'm going the route of changing the limits to the new u and since $u = 2x+1$, when $x = 0, u = 1$ and when $x = 1, u = 3$. Is this the right path?



finally I get



$$[frac{-1}{4}u^{-1} + frac{1}{8}u^{-2} ]_1^3$$



I plug in numbers but I get a different answer than wolfram...







integration






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited yesterday









Joshua Mundinger

2,5191028




2,5191028










asked yesterday









Jwan622Jwan622

2,16711530




2,16711530












  • $begingroup$
    I can't see any mistake in your work. What's the answer given by wolfram?
    $endgroup$
    – Thomas Shelby
    yesterday










  • $begingroup$
    They have 1/18 as the answer @ThomasShelby
    $endgroup$
    – Jwan622
    yesterday






  • 2




    $begingroup$
    Please recheck your calculations. I'm getting $frac1 {18} $ when I substitute the numbers.
    $endgroup$
    – Thomas Shelby
    yesterday


















  • $begingroup$
    I can't see any mistake in your work. What's the answer given by wolfram?
    $endgroup$
    – Thomas Shelby
    yesterday










  • $begingroup$
    They have 1/18 as the answer @ThomasShelby
    $endgroup$
    – Jwan622
    yesterday






  • 2




    $begingroup$
    Please recheck your calculations. I'm getting $frac1 {18} $ when I substitute the numbers.
    $endgroup$
    – Thomas Shelby
    yesterday
















$begingroup$
I can't see any mistake in your work. What's the answer given by wolfram?
$endgroup$
– Thomas Shelby
yesterday




$begingroup$
I can't see any mistake in your work. What's the answer given by wolfram?
$endgroup$
– Thomas Shelby
yesterday












$begingroup$
They have 1/18 as the answer @ThomasShelby
$endgroup$
– Jwan622
yesterday




$begingroup$
They have 1/18 as the answer @ThomasShelby
$endgroup$
– Jwan622
yesterday




2




2




$begingroup$
Please recheck your calculations. I'm getting $frac1 {18} $ when I substitute the numbers.
$endgroup$
– Thomas Shelby
yesterday




$begingroup$
Please recheck your calculations. I'm getting $frac1 {18} $ when I substitute the numbers.
$endgroup$
– Thomas Shelby
yesterday










5 Answers
5






active

oldest

votes


















1












$begingroup$

$$int_0^1 frac{xdx}{(2x+1)^3} =
int_0^1 frac{dx}{2(2x+1)^2} - int_0^1 frac{dx}{2(2x+1)^3}$$



$displaystyle int dfrac{dx}{2(2x+1)^2}:$



$qquad u=2x+1, x=dfrac{u-1}{2}, dx = dfrac 12 du$



$qquad displaystyle int dfrac{dx}{2(2x+1)^2} =
int dfrac{du}{4u^2} = -dfrac{1}{4u}$



$qquad x=0 mapsto u=1, x=1 mapsto u=3$



$qquad left[-dfrac{1}{4u} right]_1^3 = -dfrac{1}{12} + dfrac 14 = dfrac 16$



$displaystyle int dfrac{dx}{2(2x+1)^3}:$



$qquad u=2x+1, x=dfrac{u-1}{2}, dx = dfrac 12 du$



$qquad displaystyle int dfrac{dx}{2(2x+1)^3} =
int dfrac{du}{4u^3} = -dfrac{1}{8u^2}$



$qquad x=0 mapsto u=1, x=1 mapsto u=3$



$qquad left[-dfrac{1}{8u^2} right]_1^3 = -dfrac{1}{72} + dfrac 18 = dfrac 19$



$$int_0^1 frac{dx}{2(2x+1)^2} - int_0^1 frac{dx}{2(2x+1)^3}
= dfrac 16 - dfrac 19 = dfrac{1}{18}$$






share|cite|improve this answer









$endgroup$





















    6












    $begingroup$

    Hint: Substitute $x=tfrac12 u -tfrac12$




    Addendum: Your original problem was $int_0^1frac{x; dx}{(2x+1)^3}$. For this substitution, compute:

    Integrand: We have $x=tfrac12 u -tfrac12=tfrac12(u-1)$, so
    $$frac{x}{(2x+1)^3}=frac{tfrac12(u-1)}{(2cdotfrac12(u-1)+1)^3}
    =tfrac12frac{u-1}{u^3}=boxed{tfrac12left(u^{-2}-u^{-3}right)}$$



    Differential: We have $x=tfrac12 u -tfrac12$, so
    $$dx = dleft(tfrac12 u -tfrac12right)=boxed{tfrac12du}$$



    Limits of integration: The limits for $x$ are $0$ and $1$, so we find the corresponding values of $u$:
    $$x=0implies 0=tfrac12 u -tfrac12implies u=boxed{1}$$
    $$x=1implies 1 = tfrac12 u -tfrac12 implies u=boxed{3}$$
    So, replacing the integrand, differential, and limits with the boxed items above we have
    $$int_0^1frac{x; dx}{(2x+1)^3} = int_1^3tfrac12left(u^{-2}-u^{-3}right) tfrac12du$$
    $$=tfrac14int_1^3left(u^{-2}-u^{-3}right) du$$
    $$=left.frac14left(-u^{-1}+tfrac12u^{-2} right)right]_1^3$$
    $$=tfrac14[(-tfrac13+tfrac1{18})-(-1+tfrac12)]$$
    $$=tfrac14[-tfrac{5}{18}+tfrac12]$$
    $$=tfrac14[tfrac{4}{18}]$$
    $$=boxed{tfrac{1}{18}}$$



    This is the precise procedure you should follow for any substitution. Don't take shortcuts.






    share|cite|improve this answer











    $endgroup$













    • $begingroup$
      You beat me to it.
      $endgroup$
      – randomgirl
      yesterday










    • $begingroup$
      If I go your way, I wind up with $frac{1}{2} int frac{1}{u^2} - frac{1}{2} int frac{1}{u^3}$ which is different than what I have at some point. I can't see my error.
      $endgroup$
      – Jwan622
      yesterday






    • 2




      $begingroup$
      Falling way short on the "why" and leaning heavily on the "check out this trick"...
      $endgroup$
      – MichaelChirico
      20 hours ago






    • 1




      $begingroup$
      This is not a "trick" but a recognition of the entire idea behind $u$-substitution: there's a $(2x+1)^3$ in the denominator and $x = (2x+1)'/2$ in the numerator, so it really is a good idea to make the substitution $u = 2x+1$ here. Solving that integral by the method the OP proposed is extremely tedious by comparison.
      $endgroup$
      – KCd
      20 hours ago












    • $begingroup$
      It looks like your error is not computing $du$ correctly.
      $endgroup$
      – MPW
      15 hours ago



















    4












    $begingroup$

    You've computed the integral correctly, probably you made a mistake while substituting in the limits of integration. Everything else upto that point is correct.




    Is partial fractions the only way?




    No single way is the only way, you have tons of ways to do this integral. Have a look at the following approaches.





    1. Manipulation and U-Substitution




      • Make the substitution $begin{bmatrix}t \ mathrm dt end{bmatrix}=begin{bmatrix}2x+1 \ 2mathrm dxend{bmatrix}$

      • Use the General Power Rule for Integrals
        $$I=int_{0}^{1}dfrac{x mathrm dx}{(2x+1)^3}implies 2I=int_{0}^{1}dfrac{2x+1-1}{(2x+1)^3}mathrm dx$$ $$2I=int_{0}^{1}biggl[dfrac{1}{(2x+1)^2}-dfrac{1}{(2x+1)^3}biggr] mathrm dx $$




    $$implies I=dfrac{1}{4}biggl[-dfrac{1}{t}+dfrac{1}{2t^2}biggr]_{1}^{3}=dfrac{1}{18}$$







    1. Trigonometric Substitution




      • Make the substitution $begin{bmatrix}x \ mathrm dxend{bmatrix}=begin{bmatrix}1/2cdottan^2 theta\tanthetasec^2thetamathrm dthetaend{bmatrix}$

      • Use the Pythagorean Identity involving tangent and secant functions namely $sec^2theta=1+tan^2theta$ to get $2x+1=sec^2theta$.




    $$I=int_{0}^{1}dfrac{xmathrm dx}{(2x+1)^3}=int_{0}^{sqrt{2}}dfrac{tan^3theta sec^2theta}{sec^6theta}mathrm dtheta$$



    Using the definitions of $tantheta=sintheta/costheta$ and $sectheta=1/costheta$. The integral simplifies to the following form: $$I=int_{0}^{sqrt{2}}sin^3thetacosthetamathrm dtheta=int_{0}^{sqrt{2}}sin^3theta cdotmathrm d(sintheta)$$



    Again use the General Power Formula for Integrals to get the following expression:



    $$I=dfrac{1}{8}biggl[sin^4tan^{-1}(sqrt{2x})biggr]_{0}^{1}=dfrac{1}{18}$$



    To compute $sinarctan(sqrt{2})$, make use of the following easy to prove identity: $$sintan^{-1} x=dfrac{x}{sqrt{1+x^2}}$$






    share|cite|improve this answer











    $endgroup$





















      2












      $begingroup$

      A much much easier way to solve it is by using integration by parts.



      Hint: Take $u=x$, $dv = frac{dx}{(2x+1)^3}$.






      share|cite|improve this answer









      $endgroup$













      • $begingroup$
        $u$ but then $dv$?
        $endgroup$
        – manooooh
        yesterday










      • $begingroup$
        @manooooh What do you mean? I don't understand.
        $endgroup$
        – Haris Gusic
        yesterday










      • $begingroup$
        I am sorry, I understood that you used sub. My apologies.
        $endgroup$
        – manooooh
        yesterday



















      2












      $begingroup$

      1) Observe: $$x= frac 12 times left ( (2x + 1) -1right).$$



      2) Use this to obtain $$frac{x}{(2x+1)^3} = frac{1}{2} times frac{1}{(2x+1)^2} - frac 12 times frac{1}{(2x+1)^3}.$$



      3) Integrate to get



      $$ int frac{x}{(2x+1)^3} dx = -frac{1}{4} (2x+1)^{-1} + frac{1}{8} (2x+1)^{-2}.$$






      share|cite|improve this answer









      $endgroup$













        Your Answer





        StackExchange.ifUsing("editor", function () {
        return StackExchange.using("mathjaxEditing", function () {
        StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
        StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
        });
        });
        }, "mathjax-editing");

        StackExchange.ready(function() {
        var channelOptions = {
        tags: "".split(" "),
        id: "69"
        };
        initTagRenderer("".split(" "), "".split(" "), channelOptions);

        StackExchange.using("externalEditor", function() {
        // Have to fire editor after snippets, if snippets enabled
        if (StackExchange.settings.snippets.snippetsEnabled) {
        StackExchange.using("snippets", function() {
        createEditor();
        });
        }
        else {
        createEditor();
        }
        });

        function createEditor() {
        StackExchange.prepareEditor({
        heartbeatType: 'answer',
        autoActivateHeartbeat: false,
        convertImagesToLinks: true,
        noModals: true,
        showLowRepImageUploadWarning: true,
        reputationToPostImages: 10,
        bindNavPrevention: true,
        postfix: "",
        imageUploader: {
        brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
        contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
        allowUrls: true
        },
        noCode: true, onDemand: true,
        discardSelector: ".discard-answer"
        ,immediatelyShowMarkdownHelp:true
        });


        }
        });














        draft saved

        draft discarded


















        StackExchange.ready(
        function () {
        StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3120889%2fintegral-check-is-partial-fractions-the-only-way%23new-answer', 'question_page');
        }
        );

        Post as a guest















        Required, but never shown

























        5 Answers
        5






        active

        oldest

        votes








        5 Answers
        5






        active

        oldest

        votes









        active

        oldest

        votes






        active

        oldest

        votes









        1












        $begingroup$

        $$int_0^1 frac{xdx}{(2x+1)^3} =
        int_0^1 frac{dx}{2(2x+1)^2} - int_0^1 frac{dx}{2(2x+1)^3}$$



        $displaystyle int dfrac{dx}{2(2x+1)^2}:$



        $qquad u=2x+1, x=dfrac{u-1}{2}, dx = dfrac 12 du$



        $qquad displaystyle int dfrac{dx}{2(2x+1)^2} =
        int dfrac{du}{4u^2} = -dfrac{1}{4u}$



        $qquad x=0 mapsto u=1, x=1 mapsto u=3$



        $qquad left[-dfrac{1}{4u} right]_1^3 = -dfrac{1}{12} + dfrac 14 = dfrac 16$



        $displaystyle int dfrac{dx}{2(2x+1)^3}:$



        $qquad u=2x+1, x=dfrac{u-1}{2}, dx = dfrac 12 du$



        $qquad displaystyle int dfrac{dx}{2(2x+1)^3} =
        int dfrac{du}{4u^3} = -dfrac{1}{8u^2}$



        $qquad x=0 mapsto u=1, x=1 mapsto u=3$



        $qquad left[-dfrac{1}{8u^2} right]_1^3 = -dfrac{1}{72} + dfrac 18 = dfrac 19$



        $$int_0^1 frac{dx}{2(2x+1)^2} - int_0^1 frac{dx}{2(2x+1)^3}
        = dfrac 16 - dfrac 19 = dfrac{1}{18}$$






        share|cite|improve this answer









        $endgroup$


















          1












          $begingroup$

          $$int_0^1 frac{xdx}{(2x+1)^3} =
          int_0^1 frac{dx}{2(2x+1)^2} - int_0^1 frac{dx}{2(2x+1)^3}$$



          $displaystyle int dfrac{dx}{2(2x+1)^2}:$



          $qquad u=2x+1, x=dfrac{u-1}{2}, dx = dfrac 12 du$



          $qquad displaystyle int dfrac{dx}{2(2x+1)^2} =
          int dfrac{du}{4u^2} = -dfrac{1}{4u}$



          $qquad x=0 mapsto u=1, x=1 mapsto u=3$



          $qquad left[-dfrac{1}{4u} right]_1^3 = -dfrac{1}{12} + dfrac 14 = dfrac 16$



          $displaystyle int dfrac{dx}{2(2x+1)^3}:$



          $qquad u=2x+1, x=dfrac{u-1}{2}, dx = dfrac 12 du$



          $qquad displaystyle int dfrac{dx}{2(2x+1)^3} =
          int dfrac{du}{4u^3} = -dfrac{1}{8u^2}$



          $qquad x=0 mapsto u=1, x=1 mapsto u=3$



          $qquad left[-dfrac{1}{8u^2} right]_1^3 = -dfrac{1}{72} + dfrac 18 = dfrac 19$



          $$int_0^1 frac{dx}{2(2x+1)^2} - int_0^1 frac{dx}{2(2x+1)^3}
          = dfrac 16 - dfrac 19 = dfrac{1}{18}$$






          share|cite|improve this answer









          $endgroup$
















            1












            1








            1





            $begingroup$

            $$int_0^1 frac{xdx}{(2x+1)^3} =
            int_0^1 frac{dx}{2(2x+1)^2} - int_0^1 frac{dx}{2(2x+1)^3}$$



            $displaystyle int dfrac{dx}{2(2x+1)^2}:$



            $qquad u=2x+1, x=dfrac{u-1}{2}, dx = dfrac 12 du$



            $qquad displaystyle int dfrac{dx}{2(2x+1)^2} =
            int dfrac{du}{4u^2} = -dfrac{1}{4u}$



            $qquad x=0 mapsto u=1, x=1 mapsto u=3$



            $qquad left[-dfrac{1}{4u} right]_1^3 = -dfrac{1}{12} + dfrac 14 = dfrac 16$



            $displaystyle int dfrac{dx}{2(2x+1)^3}:$



            $qquad u=2x+1, x=dfrac{u-1}{2}, dx = dfrac 12 du$



            $qquad displaystyle int dfrac{dx}{2(2x+1)^3} =
            int dfrac{du}{4u^3} = -dfrac{1}{8u^2}$



            $qquad x=0 mapsto u=1, x=1 mapsto u=3$



            $qquad left[-dfrac{1}{8u^2} right]_1^3 = -dfrac{1}{72} + dfrac 18 = dfrac 19$



            $$int_0^1 frac{dx}{2(2x+1)^2} - int_0^1 frac{dx}{2(2x+1)^3}
            = dfrac 16 - dfrac 19 = dfrac{1}{18}$$






            share|cite|improve this answer









            $endgroup$



            $$int_0^1 frac{xdx}{(2x+1)^3} =
            int_0^1 frac{dx}{2(2x+1)^2} - int_0^1 frac{dx}{2(2x+1)^3}$$



            $displaystyle int dfrac{dx}{2(2x+1)^2}:$



            $qquad u=2x+1, x=dfrac{u-1}{2}, dx = dfrac 12 du$



            $qquad displaystyle int dfrac{dx}{2(2x+1)^2} =
            int dfrac{du}{4u^2} = -dfrac{1}{4u}$



            $qquad x=0 mapsto u=1, x=1 mapsto u=3$



            $qquad left[-dfrac{1}{4u} right]_1^3 = -dfrac{1}{12} + dfrac 14 = dfrac 16$



            $displaystyle int dfrac{dx}{2(2x+1)^3}:$



            $qquad u=2x+1, x=dfrac{u-1}{2}, dx = dfrac 12 du$



            $qquad displaystyle int dfrac{dx}{2(2x+1)^3} =
            int dfrac{du}{4u^3} = -dfrac{1}{8u^2}$



            $qquad x=0 mapsto u=1, x=1 mapsto u=3$



            $qquad left[-dfrac{1}{8u^2} right]_1^3 = -dfrac{1}{72} + dfrac 18 = dfrac 19$



            $$int_0^1 frac{dx}{2(2x+1)^2} - int_0^1 frac{dx}{2(2x+1)^3}
            = dfrac 16 - dfrac 19 = dfrac{1}{18}$$







            share|cite|improve this answer












            share|cite|improve this answer



            share|cite|improve this answer










            answered 17 hours ago









            steven gregorysteven gregory

            18.2k32258




            18.2k32258























                6












                $begingroup$

                Hint: Substitute $x=tfrac12 u -tfrac12$




                Addendum: Your original problem was $int_0^1frac{x; dx}{(2x+1)^3}$. For this substitution, compute:

                Integrand: We have $x=tfrac12 u -tfrac12=tfrac12(u-1)$, so
                $$frac{x}{(2x+1)^3}=frac{tfrac12(u-1)}{(2cdotfrac12(u-1)+1)^3}
                =tfrac12frac{u-1}{u^3}=boxed{tfrac12left(u^{-2}-u^{-3}right)}$$



                Differential: We have $x=tfrac12 u -tfrac12$, so
                $$dx = dleft(tfrac12 u -tfrac12right)=boxed{tfrac12du}$$



                Limits of integration: The limits for $x$ are $0$ and $1$, so we find the corresponding values of $u$:
                $$x=0implies 0=tfrac12 u -tfrac12implies u=boxed{1}$$
                $$x=1implies 1 = tfrac12 u -tfrac12 implies u=boxed{3}$$
                So, replacing the integrand, differential, and limits with the boxed items above we have
                $$int_0^1frac{x; dx}{(2x+1)^3} = int_1^3tfrac12left(u^{-2}-u^{-3}right) tfrac12du$$
                $$=tfrac14int_1^3left(u^{-2}-u^{-3}right) du$$
                $$=left.frac14left(-u^{-1}+tfrac12u^{-2} right)right]_1^3$$
                $$=tfrac14[(-tfrac13+tfrac1{18})-(-1+tfrac12)]$$
                $$=tfrac14[-tfrac{5}{18}+tfrac12]$$
                $$=tfrac14[tfrac{4}{18}]$$
                $$=boxed{tfrac{1}{18}}$$



                This is the precise procedure you should follow for any substitution. Don't take shortcuts.






                share|cite|improve this answer











                $endgroup$













                • $begingroup$
                  You beat me to it.
                  $endgroup$
                  – randomgirl
                  yesterday










                • $begingroup$
                  If I go your way, I wind up with $frac{1}{2} int frac{1}{u^2} - frac{1}{2} int frac{1}{u^3}$ which is different than what I have at some point. I can't see my error.
                  $endgroup$
                  – Jwan622
                  yesterday






                • 2




                  $begingroup$
                  Falling way short on the "why" and leaning heavily on the "check out this trick"...
                  $endgroup$
                  – MichaelChirico
                  20 hours ago






                • 1




                  $begingroup$
                  This is not a "trick" but a recognition of the entire idea behind $u$-substitution: there's a $(2x+1)^3$ in the denominator and $x = (2x+1)'/2$ in the numerator, so it really is a good idea to make the substitution $u = 2x+1$ here. Solving that integral by the method the OP proposed is extremely tedious by comparison.
                  $endgroup$
                  – KCd
                  20 hours ago












                • $begingroup$
                  It looks like your error is not computing $du$ correctly.
                  $endgroup$
                  – MPW
                  15 hours ago
















                6












                $begingroup$

                Hint: Substitute $x=tfrac12 u -tfrac12$




                Addendum: Your original problem was $int_0^1frac{x; dx}{(2x+1)^3}$. For this substitution, compute:

                Integrand: We have $x=tfrac12 u -tfrac12=tfrac12(u-1)$, so
                $$frac{x}{(2x+1)^3}=frac{tfrac12(u-1)}{(2cdotfrac12(u-1)+1)^3}
                =tfrac12frac{u-1}{u^3}=boxed{tfrac12left(u^{-2}-u^{-3}right)}$$



                Differential: We have $x=tfrac12 u -tfrac12$, so
                $$dx = dleft(tfrac12 u -tfrac12right)=boxed{tfrac12du}$$



                Limits of integration: The limits for $x$ are $0$ and $1$, so we find the corresponding values of $u$:
                $$x=0implies 0=tfrac12 u -tfrac12implies u=boxed{1}$$
                $$x=1implies 1 = tfrac12 u -tfrac12 implies u=boxed{3}$$
                So, replacing the integrand, differential, and limits with the boxed items above we have
                $$int_0^1frac{x; dx}{(2x+1)^3} = int_1^3tfrac12left(u^{-2}-u^{-3}right) tfrac12du$$
                $$=tfrac14int_1^3left(u^{-2}-u^{-3}right) du$$
                $$=left.frac14left(-u^{-1}+tfrac12u^{-2} right)right]_1^3$$
                $$=tfrac14[(-tfrac13+tfrac1{18})-(-1+tfrac12)]$$
                $$=tfrac14[-tfrac{5}{18}+tfrac12]$$
                $$=tfrac14[tfrac{4}{18}]$$
                $$=boxed{tfrac{1}{18}}$$



                This is the precise procedure you should follow for any substitution. Don't take shortcuts.






                share|cite|improve this answer











                $endgroup$













                • $begingroup$
                  You beat me to it.
                  $endgroup$
                  – randomgirl
                  yesterday










                • $begingroup$
                  If I go your way, I wind up with $frac{1}{2} int frac{1}{u^2} - frac{1}{2} int frac{1}{u^3}$ which is different than what I have at some point. I can't see my error.
                  $endgroup$
                  – Jwan622
                  yesterday






                • 2




                  $begingroup$
                  Falling way short on the "why" and leaning heavily on the "check out this trick"...
                  $endgroup$
                  – MichaelChirico
                  20 hours ago






                • 1




                  $begingroup$
                  This is not a "trick" but a recognition of the entire idea behind $u$-substitution: there's a $(2x+1)^3$ in the denominator and $x = (2x+1)'/2$ in the numerator, so it really is a good idea to make the substitution $u = 2x+1$ here. Solving that integral by the method the OP proposed is extremely tedious by comparison.
                  $endgroup$
                  – KCd
                  20 hours ago












                • $begingroup$
                  It looks like your error is not computing $du$ correctly.
                  $endgroup$
                  – MPW
                  15 hours ago














                6












                6








                6





                $begingroup$

                Hint: Substitute $x=tfrac12 u -tfrac12$




                Addendum: Your original problem was $int_0^1frac{x; dx}{(2x+1)^3}$. For this substitution, compute:

                Integrand: We have $x=tfrac12 u -tfrac12=tfrac12(u-1)$, so
                $$frac{x}{(2x+1)^3}=frac{tfrac12(u-1)}{(2cdotfrac12(u-1)+1)^3}
                =tfrac12frac{u-1}{u^3}=boxed{tfrac12left(u^{-2}-u^{-3}right)}$$



                Differential: We have $x=tfrac12 u -tfrac12$, so
                $$dx = dleft(tfrac12 u -tfrac12right)=boxed{tfrac12du}$$



                Limits of integration: The limits for $x$ are $0$ and $1$, so we find the corresponding values of $u$:
                $$x=0implies 0=tfrac12 u -tfrac12implies u=boxed{1}$$
                $$x=1implies 1 = tfrac12 u -tfrac12 implies u=boxed{3}$$
                So, replacing the integrand, differential, and limits with the boxed items above we have
                $$int_0^1frac{x; dx}{(2x+1)^3} = int_1^3tfrac12left(u^{-2}-u^{-3}right) tfrac12du$$
                $$=tfrac14int_1^3left(u^{-2}-u^{-3}right) du$$
                $$=left.frac14left(-u^{-1}+tfrac12u^{-2} right)right]_1^3$$
                $$=tfrac14[(-tfrac13+tfrac1{18})-(-1+tfrac12)]$$
                $$=tfrac14[-tfrac{5}{18}+tfrac12]$$
                $$=tfrac14[tfrac{4}{18}]$$
                $$=boxed{tfrac{1}{18}}$$



                This is the precise procedure you should follow for any substitution. Don't take shortcuts.






                share|cite|improve this answer











                $endgroup$



                Hint: Substitute $x=tfrac12 u -tfrac12$




                Addendum: Your original problem was $int_0^1frac{x; dx}{(2x+1)^3}$. For this substitution, compute:

                Integrand: We have $x=tfrac12 u -tfrac12=tfrac12(u-1)$, so
                $$frac{x}{(2x+1)^3}=frac{tfrac12(u-1)}{(2cdotfrac12(u-1)+1)^3}
                =tfrac12frac{u-1}{u^3}=boxed{tfrac12left(u^{-2}-u^{-3}right)}$$



                Differential: We have $x=tfrac12 u -tfrac12$, so
                $$dx = dleft(tfrac12 u -tfrac12right)=boxed{tfrac12du}$$



                Limits of integration: The limits for $x$ are $0$ and $1$, so we find the corresponding values of $u$:
                $$x=0implies 0=tfrac12 u -tfrac12implies u=boxed{1}$$
                $$x=1implies 1 = tfrac12 u -tfrac12 implies u=boxed{3}$$
                So, replacing the integrand, differential, and limits with the boxed items above we have
                $$int_0^1frac{x; dx}{(2x+1)^3} = int_1^3tfrac12left(u^{-2}-u^{-3}right) tfrac12du$$
                $$=tfrac14int_1^3left(u^{-2}-u^{-3}right) du$$
                $$=left.frac14left(-u^{-1}+tfrac12u^{-2} right)right]_1^3$$
                $$=tfrac14[(-tfrac13+tfrac1{18})-(-1+tfrac12)]$$
                $$=tfrac14[-tfrac{5}{18}+tfrac12]$$
                $$=tfrac14[tfrac{4}{18}]$$
                $$=boxed{tfrac{1}{18}}$$



                This is the precise procedure you should follow for any substitution. Don't take shortcuts.







                share|cite|improve this answer














                share|cite|improve this answer



                share|cite|improve this answer








                edited 15 hours ago

























                answered yesterday









                MPWMPW

                30.3k12157




                30.3k12157












                • $begingroup$
                  You beat me to it.
                  $endgroup$
                  – randomgirl
                  yesterday










                • $begingroup$
                  If I go your way, I wind up with $frac{1}{2} int frac{1}{u^2} - frac{1}{2} int frac{1}{u^3}$ which is different than what I have at some point. I can't see my error.
                  $endgroup$
                  – Jwan622
                  yesterday






                • 2




                  $begingroup$
                  Falling way short on the "why" and leaning heavily on the "check out this trick"...
                  $endgroup$
                  – MichaelChirico
                  20 hours ago






                • 1




                  $begingroup$
                  This is not a "trick" but a recognition of the entire idea behind $u$-substitution: there's a $(2x+1)^3$ in the denominator and $x = (2x+1)'/2$ in the numerator, so it really is a good idea to make the substitution $u = 2x+1$ here. Solving that integral by the method the OP proposed is extremely tedious by comparison.
                  $endgroup$
                  – KCd
                  20 hours ago












                • $begingroup$
                  It looks like your error is not computing $du$ correctly.
                  $endgroup$
                  – MPW
                  15 hours ago


















                • $begingroup$
                  You beat me to it.
                  $endgroup$
                  – randomgirl
                  yesterday










                • $begingroup$
                  If I go your way, I wind up with $frac{1}{2} int frac{1}{u^2} - frac{1}{2} int frac{1}{u^3}$ which is different than what I have at some point. I can't see my error.
                  $endgroup$
                  – Jwan622
                  yesterday






                • 2




                  $begingroup$
                  Falling way short on the "why" and leaning heavily on the "check out this trick"...
                  $endgroup$
                  – MichaelChirico
                  20 hours ago






                • 1




                  $begingroup$
                  This is not a "trick" but a recognition of the entire idea behind $u$-substitution: there's a $(2x+1)^3$ in the denominator and $x = (2x+1)'/2$ in the numerator, so it really is a good idea to make the substitution $u = 2x+1$ here. Solving that integral by the method the OP proposed is extremely tedious by comparison.
                  $endgroup$
                  – KCd
                  20 hours ago












                • $begingroup$
                  It looks like your error is not computing $du$ correctly.
                  $endgroup$
                  – MPW
                  15 hours ago
















                $begingroup$
                You beat me to it.
                $endgroup$
                – randomgirl
                yesterday




                $begingroup$
                You beat me to it.
                $endgroup$
                – randomgirl
                yesterday












                $begingroup$
                If I go your way, I wind up with $frac{1}{2} int frac{1}{u^2} - frac{1}{2} int frac{1}{u^3}$ which is different than what I have at some point. I can't see my error.
                $endgroup$
                – Jwan622
                yesterday




                $begingroup$
                If I go your way, I wind up with $frac{1}{2} int frac{1}{u^2} - frac{1}{2} int frac{1}{u^3}$ which is different than what I have at some point. I can't see my error.
                $endgroup$
                – Jwan622
                yesterday




                2




                2




                $begingroup$
                Falling way short on the "why" and leaning heavily on the "check out this trick"...
                $endgroup$
                – MichaelChirico
                20 hours ago




                $begingroup$
                Falling way short on the "why" and leaning heavily on the "check out this trick"...
                $endgroup$
                – MichaelChirico
                20 hours ago




                1




                1




                $begingroup$
                This is not a "trick" but a recognition of the entire idea behind $u$-substitution: there's a $(2x+1)^3$ in the denominator and $x = (2x+1)'/2$ in the numerator, so it really is a good idea to make the substitution $u = 2x+1$ here. Solving that integral by the method the OP proposed is extremely tedious by comparison.
                $endgroup$
                – KCd
                20 hours ago






                $begingroup$
                This is not a "trick" but a recognition of the entire idea behind $u$-substitution: there's a $(2x+1)^3$ in the denominator and $x = (2x+1)'/2$ in the numerator, so it really is a good idea to make the substitution $u = 2x+1$ here. Solving that integral by the method the OP proposed is extremely tedious by comparison.
                $endgroup$
                – KCd
                20 hours ago














                $begingroup$
                It looks like your error is not computing $du$ correctly.
                $endgroup$
                – MPW
                15 hours ago




                $begingroup$
                It looks like your error is not computing $du$ correctly.
                $endgroup$
                – MPW
                15 hours ago











                4












                $begingroup$

                You've computed the integral correctly, probably you made a mistake while substituting in the limits of integration. Everything else upto that point is correct.




                Is partial fractions the only way?




                No single way is the only way, you have tons of ways to do this integral. Have a look at the following approaches.





                1. Manipulation and U-Substitution




                  • Make the substitution $begin{bmatrix}t \ mathrm dt end{bmatrix}=begin{bmatrix}2x+1 \ 2mathrm dxend{bmatrix}$

                  • Use the General Power Rule for Integrals
                    $$I=int_{0}^{1}dfrac{x mathrm dx}{(2x+1)^3}implies 2I=int_{0}^{1}dfrac{2x+1-1}{(2x+1)^3}mathrm dx$$ $$2I=int_{0}^{1}biggl[dfrac{1}{(2x+1)^2}-dfrac{1}{(2x+1)^3}biggr] mathrm dx $$




                $$implies I=dfrac{1}{4}biggl[-dfrac{1}{t}+dfrac{1}{2t^2}biggr]_{1}^{3}=dfrac{1}{18}$$







                1. Trigonometric Substitution




                  • Make the substitution $begin{bmatrix}x \ mathrm dxend{bmatrix}=begin{bmatrix}1/2cdottan^2 theta\tanthetasec^2thetamathrm dthetaend{bmatrix}$

                  • Use the Pythagorean Identity involving tangent and secant functions namely $sec^2theta=1+tan^2theta$ to get $2x+1=sec^2theta$.




                $$I=int_{0}^{1}dfrac{xmathrm dx}{(2x+1)^3}=int_{0}^{sqrt{2}}dfrac{tan^3theta sec^2theta}{sec^6theta}mathrm dtheta$$



                Using the definitions of $tantheta=sintheta/costheta$ and $sectheta=1/costheta$. The integral simplifies to the following form: $$I=int_{0}^{sqrt{2}}sin^3thetacosthetamathrm dtheta=int_{0}^{sqrt{2}}sin^3theta cdotmathrm d(sintheta)$$



                Again use the General Power Formula for Integrals to get the following expression:



                $$I=dfrac{1}{8}biggl[sin^4tan^{-1}(sqrt{2x})biggr]_{0}^{1}=dfrac{1}{18}$$



                To compute $sinarctan(sqrt{2})$, make use of the following easy to prove identity: $$sintan^{-1} x=dfrac{x}{sqrt{1+x^2}}$$






                share|cite|improve this answer











                $endgroup$


















                  4












                  $begingroup$

                  You've computed the integral correctly, probably you made a mistake while substituting in the limits of integration. Everything else upto that point is correct.




                  Is partial fractions the only way?




                  No single way is the only way, you have tons of ways to do this integral. Have a look at the following approaches.





                  1. Manipulation and U-Substitution




                    • Make the substitution $begin{bmatrix}t \ mathrm dt end{bmatrix}=begin{bmatrix}2x+1 \ 2mathrm dxend{bmatrix}$

                    • Use the General Power Rule for Integrals
                      $$I=int_{0}^{1}dfrac{x mathrm dx}{(2x+1)^3}implies 2I=int_{0}^{1}dfrac{2x+1-1}{(2x+1)^3}mathrm dx$$ $$2I=int_{0}^{1}biggl[dfrac{1}{(2x+1)^2}-dfrac{1}{(2x+1)^3}biggr] mathrm dx $$




                  $$implies I=dfrac{1}{4}biggl[-dfrac{1}{t}+dfrac{1}{2t^2}biggr]_{1}^{3}=dfrac{1}{18}$$







                  1. Trigonometric Substitution




                    • Make the substitution $begin{bmatrix}x \ mathrm dxend{bmatrix}=begin{bmatrix}1/2cdottan^2 theta\tanthetasec^2thetamathrm dthetaend{bmatrix}$

                    • Use the Pythagorean Identity involving tangent and secant functions namely $sec^2theta=1+tan^2theta$ to get $2x+1=sec^2theta$.




                  $$I=int_{0}^{1}dfrac{xmathrm dx}{(2x+1)^3}=int_{0}^{sqrt{2}}dfrac{tan^3theta sec^2theta}{sec^6theta}mathrm dtheta$$



                  Using the definitions of $tantheta=sintheta/costheta$ and $sectheta=1/costheta$. The integral simplifies to the following form: $$I=int_{0}^{sqrt{2}}sin^3thetacosthetamathrm dtheta=int_{0}^{sqrt{2}}sin^3theta cdotmathrm d(sintheta)$$



                  Again use the General Power Formula for Integrals to get the following expression:



                  $$I=dfrac{1}{8}biggl[sin^4tan^{-1}(sqrt{2x})biggr]_{0}^{1}=dfrac{1}{18}$$



                  To compute $sinarctan(sqrt{2})$, make use of the following easy to prove identity: $$sintan^{-1} x=dfrac{x}{sqrt{1+x^2}}$$






                  share|cite|improve this answer











                  $endgroup$
















                    4












                    4








                    4





                    $begingroup$

                    You've computed the integral correctly, probably you made a mistake while substituting in the limits of integration. Everything else upto that point is correct.




                    Is partial fractions the only way?




                    No single way is the only way, you have tons of ways to do this integral. Have a look at the following approaches.





                    1. Manipulation and U-Substitution




                      • Make the substitution $begin{bmatrix}t \ mathrm dt end{bmatrix}=begin{bmatrix}2x+1 \ 2mathrm dxend{bmatrix}$

                      • Use the General Power Rule for Integrals
                        $$I=int_{0}^{1}dfrac{x mathrm dx}{(2x+1)^3}implies 2I=int_{0}^{1}dfrac{2x+1-1}{(2x+1)^3}mathrm dx$$ $$2I=int_{0}^{1}biggl[dfrac{1}{(2x+1)^2}-dfrac{1}{(2x+1)^3}biggr] mathrm dx $$




                    $$implies I=dfrac{1}{4}biggl[-dfrac{1}{t}+dfrac{1}{2t^2}biggr]_{1}^{3}=dfrac{1}{18}$$







                    1. Trigonometric Substitution




                      • Make the substitution $begin{bmatrix}x \ mathrm dxend{bmatrix}=begin{bmatrix}1/2cdottan^2 theta\tanthetasec^2thetamathrm dthetaend{bmatrix}$

                      • Use the Pythagorean Identity involving tangent and secant functions namely $sec^2theta=1+tan^2theta$ to get $2x+1=sec^2theta$.




                    $$I=int_{0}^{1}dfrac{xmathrm dx}{(2x+1)^3}=int_{0}^{sqrt{2}}dfrac{tan^3theta sec^2theta}{sec^6theta}mathrm dtheta$$



                    Using the definitions of $tantheta=sintheta/costheta$ and $sectheta=1/costheta$. The integral simplifies to the following form: $$I=int_{0}^{sqrt{2}}sin^3thetacosthetamathrm dtheta=int_{0}^{sqrt{2}}sin^3theta cdotmathrm d(sintheta)$$



                    Again use the General Power Formula for Integrals to get the following expression:



                    $$I=dfrac{1}{8}biggl[sin^4tan^{-1}(sqrt{2x})biggr]_{0}^{1}=dfrac{1}{18}$$



                    To compute $sinarctan(sqrt{2})$, make use of the following easy to prove identity: $$sintan^{-1} x=dfrac{x}{sqrt{1+x^2}}$$






                    share|cite|improve this answer











                    $endgroup$



                    You've computed the integral correctly, probably you made a mistake while substituting in the limits of integration. Everything else upto that point is correct.




                    Is partial fractions the only way?




                    No single way is the only way, you have tons of ways to do this integral. Have a look at the following approaches.





                    1. Manipulation and U-Substitution




                      • Make the substitution $begin{bmatrix}t \ mathrm dt end{bmatrix}=begin{bmatrix}2x+1 \ 2mathrm dxend{bmatrix}$

                      • Use the General Power Rule for Integrals
                        $$I=int_{0}^{1}dfrac{x mathrm dx}{(2x+1)^3}implies 2I=int_{0}^{1}dfrac{2x+1-1}{(2x+1)^3}mathrm dx$$ $$2I=int_{0}^{1}biggl[dfrac{1}{(2x+1)^2}-dfrac{1}{(2x+1)^3}biggr] mathrm dx $$




                    $$implies I=dfrac{1}{4}biggl[-dfrac{1}{t}+dfrac{1}{2t^2}biggr]_{1}^{3}=dfrac{1}{18}$$







                    1. Trigonometric Substitution




                      • Make the substitution $begin{bmatrix}x \ mathrm dxend{bmatrix}=begin{bmatrix}1/2cdottan^2 theta\tanthetasec^2thetamathrm dthetaend{bmatrix}$

                      • Use the Pythagorean Identity involving tangent and secant functions namely $sec^2theta=1+tan^2theta$ to get $2x+1=sec^2theta$.




                    $$I=int_{0}^{1}dfrac{xmathrm dx}{(2x+1)^3}=int_{0}^{sqrt{2}}dfrac{tan^3theta sec^2theta}{sec^6theta}mathrm dtheta$$



                    Using the definitions of $tantheta=sintheta/costheta$ and $sectheta=1/costheta$. The integral simplifies to the following form: $$I=int_{0}^{sqrt{2}}sin^3thetacosthetamathrm dtheta=int_{0}^{sqrt{2}}sin^3theta cdotmathrm d(sintheta)$$



                    Again use the General Power Formula for Integrals to get the following expression:



                    $$I=dfrac{1}{8}biggl[sin^4tan^{-1}(sqrt{2x})biggr]_{0}^{1}=dfrac{1}{18}$$



                    To compute $sinarctan(sqrt{2})$, make use of the following easy to prove identity: $$sintan^{-1} x=dfrac{x}{sqrt{1+x^2}}$$







                    share|cite|improve this answer














                    share|cite|improve this answer



                    share|cite|improve this answer








                    edited 23 mins ago

























                    answered yesterday









                    Paras KhoslaParas Khosla

                    880214




                    880214























                        2












                        $begingroup$

                        A much much easier way to solve it is by using integration by parts.



                        Hint: Take $u=x$, $dv = frac{dx}{(2x+1)^3}$.






                        share|cite|improve this answer









                        $endgroup$













                        • $begingroup$
                          $u$ but then $dv$?
                          $endgroup$
                          – manooooh
                          yesterday










                        • $begingroup$
                          @manooooh What do you mean? I don't understand.
                          $endgroup$
                          – Haris Gusic
                          yesterday










                        • $begingroup$
                          I am sorry, I understood that you used sub. My apologies.
                          $endgroup$
                          – manooooh
                          yesterday
















                        2












                        $begingroup$

                        A much much easier way to solve it is by using integration by parts.



                        Hint: Take $u=x$, $dv = frac{dx}{(2x+1)^3}$.






                        share|cite|improve this answer









                        $endgroup$













                        • $begingroup$
                          $u$ but then $dv$?
                          $endgroup$
                          – manooooh
                          yesterday










                        • $begingroup$
                          @manooooh What do you mean? I don't understand.
                          $endgroup$
                          – Haris Gusic
                          yesterday










                        • $begingroup$
                          I am sorry, I understood that you used sub. My apologies.
                          $endgroup$
                          – manooooh
                          yesterday














                        2












                        2








                        2





                        $begingroup$

                        A much much easier way to solve it is by using integration by parts.



                        Hint: Take $u=x$, $dv = frac{dx}{(2x+1)^3}$.






                        share|cite|improve this answer









                        $endgroup$



                        A much much easier way to solve it is by using integration by parts.



                        Hint: Take $u=x$, $dv = frac{dx}{(2x+1)^3}$.







                        share|cite|improve this answer












                        share|cite|improve this answer



                        share|cite|improve this answer










                        answered yesterday









                        Haris GusicHaris Gusic

                        1,182116




                        1,182116












                        • $begingroup$
                          $u$ but then $dv$?
                          $endgroup$
                          – manooooh
                          yesterday










                        • $begingroup$
                          @manooooh What do you mean? I don't understand.
                          $endgroup$
                          – Haris Gusic
                          yesterday










                        • $begingroup$
                          I am sorry, I understood that you used sub. My apologies.
                          $endgroup$
                          – manooooh
                          yesterday


















                        • $begingroup$
                          $u$ but then $dv$?
                          $endgroup$
                          – manooooh
                          yesterday










                        • $begingroup$
                          @manooooh What do you mean? I don't understand.
                          $endgroup$
                          – Haris Gusic
                          yesterday










                        • $begingroup$
                          I am sorry, I understood that you used sub. My apologies.
                          $endgroup$
                          – manooooh
                          yesterday
















                        $begingroup$
                        $u$ but then $dv$?
                        $endgroup$
                        – manooooh
                        yesterday




                        $begingroup$
                        $u$ but then $dv$?
                        $endgroup$
                        – manooooh
                        yesterday












                        $begingroup$
                        @manooooh What do you mean? I don't understand.
                        $endgroup$
                        – Haris Gusic
                        yesterday




                        $begingroup$
                        @manooooh What do you mean? I don't understand.
                        $endgroup$
                        – Haris Gusic
                        yesterday












                        $begingroup$
                        I am sorry, I understood that you used sub. My apologies.
                        $endgroup$
                        – manooooh
                        yesterday




                        $begingroup$
                        I am sorry, I understood that you used sub. My apologies.
                        $endgroup$
                        – manooooh
                        yesterday











                        2












                        $begingroup$

                        1) Observe: $$x= frac 12 times left ( (2x + 1) -1right).$$



                        2) Use this to obtain $$frac{x}{(2x+1)^3} = frac{1}{2} times frac{1}{(2x+1)^2} - frac 12 times frac{1}{(2x+1)^3}.$$



                        3) Integrate to get



                        $$ int frac{x}{(2x+1)^3} dx = -frac{1}{4} (2x+1)^{-1} + frac{1}{8} (2x+1)^{-2}.$$






                        share|cite|improve this answer









                        $endgroup$


















                          2












                          $begingroup$

                          1) Observe: $$x= frac 12 times left ( (2x + 1) -1right).$$



                          2) Use this to obtain $$frac{x}{(2x+1)^3} = frac{1}{2} times frac{1}{(2x+1)^2} - frac 12 times frac{1}{(2x+1)^3}.$$



                          3) Integrate to get



                          $$ int frac{x}{(2x+1)^3} dx = -frac{1}{4} (2x+1)^{-1} + frac{1}{8} (2x+1)^{-2}.$$






                          share|cite|improve this answer









                          $endgroup$
















                            2












                            2








                            2





                            $begingroup$

                            1) Observe: $$x= frac 12 times left ( (2x + 1) -1right).$$



                            2) Use this to obtain $$frac{x}{(2x+1)^3} = frac{1}{2} times frac{1}{(2x+1)^2} - frac 12 times frac{1}{(2x+1)^3}.$$



                            3) Integrate to get



                            $$ int frac{x}{(2x+1)^3} dx = -frac{1}{4} (2x+1)^{-1} + frac{1}{8} (2x+1)^{-2}.$$






                            share|cite|improve this answer









                            $endgroup$



                            1) Observe: $$x= frac 12 times left ( (2x + 1) -1right).$$



                            2) Use this to obtain $$frac{x}{(2x+1)^3} = frac{1}{2} times frac{1}{(2x+1)^2} - frac 12 times frac{1}{(2x+1)^3}.$$



                            3) Integrate to get



                            $$ int frac{x}{(2x+1)^3} dx = -frac{1}{4} (2x+1)^{-1} + frac{1}{8} (2x+1)^{-2}.$$







                            share|cite|improve this answer












                            share|cite|improve this answer



                            share|cite|improve this answer










                            answered yesterday









                            FnacoolFnacool

                            5,031511




                            5,031511






























                                draft saved

                                draft discarded




















































                                Thanks for contributing an answer to Mathematics Stack Exchange!


                                • Please be sure to answer the question. Provide details and share your research!

                                But avoid



                                • Asking for help, clarification, or responding to other answers.

                                • Making statements based on opinion; back them up with references or personal experience.


                                Use MathJax to format equations. MathJax reference.


                                To learn more, see our tips on writing great answers.




                                draft saved


                                draft discarded














                                StackExchange.ready(
                                function () {
                                StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3120889%2fintegral-check-is-partial-fractions-the-only-way%23new-answer', 'question_page');
                                }
                                );

                                Post as a guest















                                Required, but never shown





















































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown

































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown







                                Popular posts from this blog

                                How to label and detect the document text images

                                Tabula Rosettana

                                Aureus (color)