Integral check. Is partial fractions the only way?
$begingroup$
I'm getting a different answer from wolfram and I have no idea where. I have to integrate:
$$int_0^1 frac{xdx}{(2x+1)^3}$$
Is partial fractions the only way?
So evaluating the fraction first:
$$frac{x}{(2x+1)^3} = frac{A}{2x+1} + frac{B}{(2x+1)^2} + frac{C}{(2x+1)^3}$$
$$x = A(2x+1)^2 + B(2x+1) + C$$
$$x = A(4x^2 + 4x + 1) + 2Bx + B + C$$
$$x = 4Ax^2 + 4Ax + A + 2Bx + B + C$$
$$x = x^2(4A) + x(4A+2B) + A + B + C$$
$4A = 0$ and $4A+2B = 1$ and $A + B + C = 0$ so $A = 0$ and $B=frac{1}{2}$ and $C = frac{-1}{2}$
Is the partial fraction part right?
So then I get:
$$int_0^1 frac{xdx}{(2x+1)^3} = int_0^1 frac{dx}{(2(2x+1)^2)} - int_0^1 frac{dx}{2(2x+1)^3}$$
for both, using $u = 2x+1$ and $frac{du}{dx} = 2$ and $du = 2dx$ and $frac{du}{2} = dx$,
$$frac{1}{4} int frac{du}{u^2} - frac{1}{4} int frac{du}{u^3}$$
$$ = [frac{1}{4} - u^{-1} - frac{1}{4} cdot frac{1}{-2} u^{-2} ]_1^3$$
I'm going the route of changing the limits to the new u and since $u = 2x+1$, when $x = 0, u = 1$ and when $x = 1, u = 3$. Is this the right path?
finally I get
$$[frac{-1}{4}u^{-1} + frac{1}{8}u^{-2} ]_1^3$$
I plug in numbers but I get a different answer than wolfram...
integration
$endgroup$
add a comment |
$begingroup$
I'm getting a different answer from wolfram and I have no idea where. I have to integrate:
$$int_0^1 frac{xdx}{(2x+1)^3}$$
Is partial fractions the only way?
So evaluating the fraction first:
$$frac{x}{(2x+1)^3} = frac{A}{2x+1} + frac{B}{(2x+1)^2} + frac{C}{(2x+1)^3}$$
$$x = A(2x+1)^2 + B(2x+1) + C$$
$$x = A(4x^2 + 4x + 1) + 2Bx + B + C$$
$$x = 4Ax^2 + 4Ax + A + 2Bx + B + C$$
$$x = x^2(4A) + x(4A+2B) + A + B + C$$
$4A = 0$ and $4A+2B = 1$ and $A + B + C = 0$ so $A = 0$ and $B=frac{1}{2}$ and $C = frac{-1}{2}$
Is the partial fraction part right?
So then I get:
$$int_0^1 frac{xdx}{(2x+1)^3} = int_0^1 frac{dx}{(2(2x+1)^2)} - int_0^1 frac{dx}{2(2x+1)^3}$$
for both, using $u = 2x+1$ and $frac{du}{dx} = 2$ and $du = 2dx$ and $frac{du}{2} = dx$,
$$frac{1}{4} int frac{du}{u^2} - frac{1}{4} int frac{du}{u^3}$$
$$ = [frac{1}{4} - u^{-1} - frac{1}{4} cdot frac{1}{-2} u^{-2} ]_1^3$$
I'm going the route of changing the limits to the new u and since $u = 2x+1$, when $x = 0, u = 1$ and when $x = 1, u = 3$. Is this the right path?
finally I get
$$[frac{-1}{4}u^{-1} + frac{1}{8}u^{-2} ]_1^3$$
I plug in numbers but I get a different answer than wolfram...
integration
$endgroup$
$begingroup$
I can't see any mistake in your work. What's the answer given by wolfram?
$endgroup$
– Thomas Shelby
yesterday
$begingroup$
They have 1/18 as the answer @ThomasShelby
$endgroup$
– Jwan622
yesterday
2
$begingroup$
Please recheck your calculations. I'm getting $frac1 {18} $ when I substitute the numbers.
$endgroup$
– Thomas Shelby
yesterday
add a comment |
$begingroup$
I'm getting a different answer from wolfram and I have no idea where. I have to integrate:
$$int_0^1 frac{xdx}{(2x+1)^3}$$
Is partial fractions the only way?
So evaluating the fraction first:
$$frac{x}{(2x+1)^3} = frac{A}{2x+1} + frac{B}{(2x+1)^2} + frac{C}{(2x+1)^3}$$
$$x = A(2x+1)^2 + B(2x+1) + C$$
$$x = A(4x^2 + 4x + 1) + 2Bx + B + C$$
$$x = 4Ax^2 + 4Ax + A + 2Bx + B + C$$
$$x = x^2(4A) + x(4A+2B) + A + B + C$$
$4A = 0$ and $4A+2B = 1$ and $A + B + C = 0$ so $A = 0$ and $B=frac{1}{2}$ and $C = frac{-1}{2}$
Is the partial fraction part right?
So then I get:
$$int_0^1 frac{xdx}{(2x+1)^3} = int_0^1 frac{dx}{(2(2x+1)^2)} - int_0^1 frac{dx}{2(2x+1)^3}$$
for both, using $u = 2x+1$ and $frac{du}{dx} = 2$ and $du = 2dx$ and $frac{du}{2} = dx$,
$$frac{1}{4} int frac{du}{u^2} - frac{1}{4} int frac{du}{u^3}$$
$$ = [frac{1}{4} - u^{-1} - frac{1}{4} cdot frac{1}{-2} u^{-2} ]_1^3$$
I'm going the route of changing the limits to the new u and since $u = 2x+1$, when $x = 0, u = 1$ and when $x = 1, u = 3$. Is this the right path?
finally I get
$$[frac{-1}{4}u^{-1} + frac{1}{8}u^{-2} ]_1^3$$
I plug in numbers but I get a different answer than wolfram...
integration
$endgroup$
I'm getting a different answer from wolfram and I have no idea where. I have to integrate:
$$int_0^1 frac{xdx}{(2x+1)^3}$$
Is partial fractions the only way?
So evaluating the fraction first:
$$frac{x}{(2x+1)^3} = frac{A}{2x+1} + frac{B}{(2x+1)^2} + frac{C}{(2x+1)^3}$$
$$x = A(2x+1)^2 + B(2x+1) + C$$
$$x = A(4x^2 + 4x + 1) + 2Bx + B + C$$
$$x = 4Ax^2 + 4Ax + A + 2Bx + B + C$$
$$x = x^2(4A) + x(4A+2B) + A + B + C$$
$4A = 0$ and $4A+2B = 1$ and $A + B + C = 0$ so $A = 0$ and $B=frac{1}{2}$ and $C = frac{-1}{2}$
Is the partial fraction part right?
So then I get:
$$int_0^1 frac{xdx}{(2x+1)^3} = int_0^1 frac{dx}{(2(2x+1)^2)} - int_0^1 frac{dx}{2(2x+1)^3}$$
for both, using $u = 2x+1$ and $frac{du}{dx} = 2$ and $du = 2dx$ and $frac{du}{2} = dx$,
$$frac{1}{4} int frac{du}{u^2} - frac{1}{4} int frac{du}{u^3}$$
$$ = [frac{1}{4} - u^{-1} - frac{1}{4} cdot frac{1}{-2} u^{-2} ]_1^3$$
I'm going the route of changing the limits to the new u and since $u = 2x+1$, when $x = 0, u = 1$ and when $x = 1, u = 3$. Is this the right path?
finally I get
$$[frac{-1}{4}u^{-1} + frac{1}{8}u^{-2} ]_1^3$$
I plug in numbers but I get a different answer than wolfram...
integration
integration
edited yesterday
Joshua Mundinger
2,5191028
2,5191028
asked yesterday
Jwan622Jwan622
2,16711530
2,16711530
$begingroup$
I can't see any mistake in your work. What's the answer given by wolfram?
$endgroup$
– Thomas Shelby
yesterday
$begingroup$
They have 1/18 as the answer @ThomasShelby
$endgroup$
– Jwan622
yesterday
2
$begingroup$
Please recheck your calculations. I'm getting $frac1 {18} $ when I substitute the numbers.
$endgroup$
– Thomas Shelby
yesterday
add a comment |
$begingroup$
I can't see any mistake in your work. What's the answer given by wolfram?
$endgroup$
– Thomas Shelby
yesterday
$begingroup$
They have 1/18 as the answer @ThomasShelby
$endgroup$
– Jwan622
yesterday
2
$begingroup$
Please recheck your calculations. I'm getting $frac1 {18} $ when I substitute the numbers.
$endgroup$
– Thomas Shelby
yesterday
$begingroup$
I can't see any mistake in your work. What's the answer given by wolfram?
$endgroup$
– Thomas Shelby
yesterday
$begingroup$
I can't see any mistake in your work. What's the answer given by wolfram?
$endgroup$
– Thomas Shelby
yesterday
$begingroup$
They have 1/18 as the answer @ThomasShelby
$endgroup$
– Jwan622
yesterday
$begingroup$
They have 1/18 as the answer @ThomasShelby
$endgroup$
– Jwan622
yesterday
2
2
$begingroup$
Please recheck your calculations. I'm getting $frac1 {18} $ when I substitute the numbers.
$endgroup$
– Thomas Shelby
yesterday
$begingroup$
Please recheck your calculations. I'm getting $frac1 {18} $ when I substitute the numbers.
$endgroup$
– Thomas Shelby
yesterday
add a comment |
5 Answers
5
active
oldest
votes
$begingroup$
$$int_0^1 frac{xdx}{(2x+1)^3} =
int_0^1 frac{dx}{2(2x+1)^2} - int_0^1 frac{dx}{2(2x+1)^3}$$
$displaystyle int dfrac{dx}{2(2x+1)^2}:$
$qquad u=2x+1, x=dfrac{u-1}{2}, dx = dfrac 12 du$
$qquad displaystyle int dfrac{dx}{2(2x+1)^2} =
int dfrac{du}{4u^2} = -dfrac{1}{4u}$
$qquad x=0 mapsto u=1, x=1 mapsto u=3$
$qquad left[-dfrac{1}{4u} right]_1^3 = -dfrac{1}{12} + dfrac 14 = dfrac 16$
$displaystyle int dfrac{dx}{2(2x+1)^3}:$
$qquad u=2x+1, x=dfrac{u-1}{2}, dx = dfrac 12 du$
$qquad displaystyle int dfrac{dx}{2(2x+1)^3} =
int dfrac{du}{4u^3} = -dfrac{1}{8u^2}$
$qquad x=0 mapsto u=1, x=1 mapsto u=3$
$qquad left[-dfrac{1}{8u^2} right]_1^3 = -dfrac{1}{72} + dfrac 18 = dfrac 19$
$$int_0^1 frac{dx}{2(2x+1)^2} - int_0^1 frac{dx}{2(2x+1)^3}
= dfrac 16 - dfrac 19 = dfrac{1}{18}$$
$endgroup$
add a comment |
$begingroup$
Hint: Substitute $x=tfrac12 u -tfrac12$
Addendum: Your original problem was $int_0^1frac{x; dx}{(2x+1)^3}$. For this substitution, compute:
Integrand: We have $x=tfrac12 u -tfrac12=tfrac12(u-1)$, so
$$frac{x}{(2x+1)^3}=frac{tfrac12(u-1)}{(2cdotfrac12(u-1)+1)^3}
=tfrac12frac{u-1}{u^3}=boxed{tfrac12left(u^{-2}-u^{-3}right)}$$
Differential: We have $x=tfrac12 u -tfrac12$, so
$$dx = dleft(tfrac12 u -tfrac12right)=boxed{tfrac12du}$$
Limits of integration: The limits for $x$ are $0$ and $1$, so we find the corresponding values of $u$:
$$x=0implies 0=tfrac12 u -tfrac12implies u=boxed{1}$$
$$x=1implies 1 = tfrac12 u -tfrac12 implies u=boxed{3}$$
So, replacing the integrand, differential, and limits with the boxed items above we have
$$int_0^1frac{x; dx}{(2x+1)^3} = int_1^3tfrac12left(u^{-2}-u^{-3}right) tfrac12du$$
$$=tfrac14int_1^3left(u^{-2}-u^{-3}right) du$$
$$=left.frac14left(-u^{-1}+tfrac12u^{-2} right)right]_1^3$$
$$=tfrac14[(-tfrac13+tfrac1{18})-(-1+tfrac12)]$$
$$=tfrac14[-tfrac{5}{18}+tfrac12]$$
$$=tfrac14[tfrac{4}{18}]$$
$$=boxed{tfrac{1}{18}}$$
This is the precise procedure you should follow for any substitution. Don't take shortcuts.
$endgroup$
$begingroup$
You beat me to it.
$endgroup$
– randomgirl
yesterday
$begingroup$
If I go your way, I wind up with $frac{1}{2} int frac{1}{u^2} - frac{1}{2} int frac{1}{u^3}$ which is different than what I have at some point. I can't see my error.
$endgroup$
– Jwan622
yesterday
2
$begingroup$
Falling way short on the "why" and leaning heavily on the "check out this trick"...
$endgroup$
– MichaelChirico
20 hours ago
1
$begingroup$
This is not a "trick" but a recognition of the entire idea behind $u$-substitution: there's a $(2x+1)^3$ in the denominator and $x = (2x+1)'/2$ in the numerator, so it really is a good idea to make the substitution $u = 2x+1$ here. Solving that integral by the method the OP proposed is extremely tedious by comparison.
$endgroup$
– KCd
20 hours ago
$begingroup$
It looks like your error is not computing $du$ correctly.
$endgroup$
– MPW
15 hours ago
add a comment |
$begingroup$
You've computed the integral correctly, probably you made a mistake while substituting in the limits of integration. Everything else upto that point is correct.
Is partial fractions the only way?
No single way is the only way, you have tons of ways to do this integral. Have a look at the following approaches.
Manipulation and U-Substitution
- Make the substitution $begin{bmatrix}t \ mathrm dt end{bmatrix}=begin{bmatrix}2x+1 \ 2mathrm dxend{bmatrix}$
- Use the General Power Rule for Integrals
$$I=int_{0}^{1}dfrac{x mathrm dx}{(2x+1)^3}implies 2I=int_{0}^{1}dfrac{2x+1-1}{(2x+1)^3}mathrm dx$$ $$2I=int_{0}^{1}biggl[dfrac{1}{(2x+1)^2}-dfrac{1}{(2x+1)^3}biggr] mathrm dx $$
- Make the substitution $begin{bmatrix}t \ mathrm dt end{bmatrix}=begin{bmatrix}2x+1 \ 2mathrm dxend{bmatrix}$
$$implies I=dfrac{1}{4}biggl[-dfrac{1}{t}+dfrac{1}{2t^2}biggr]_{1}^{3}=dfrac{1}{18}$$
Trigonometric Substitution
- Make the substitution $begin{bmatrix}x \ mathrm dxend{bmatrix}=begin{bmatrix}1/2cdottan^2 theta\tanthetasec^2thetamathrm dthetaend{bmatrix}$
- Use the Pythagorean Identity involving tangent and secant functions namely $sec^2theta=1+tan^2theta$ to get $2x+1=sec^2theta$.
- Make the substitution $begin{bmatrix}x \ mathrm dxend{bmatrix}=begin{bmatrix}1/2cdottan^2 theta\tanthetasec^2thetamathrm dthetaend{bmatrix}$
$$I=int_{0}^{1}dfrac{xmathrm dx}{(2x+1)^3}=int_{0}^{sqrt{2}}dfrac{tan^3theta sec^2theta}{sec^6theta}mathrm dtheta$$
Using the definitions of $tantheta=sintheta/costheta$ and $sectheta=1/costheta$. The integral simplifies to the following form: $$I=int_{0}^{sqrt{2}}sin^3thetacosthetamathrm dtheta=int_{0}^{sqrt{2}}sin^3theta cdotmathrm d(sintheta)$$
Again use the General Power Formula for Integrals to get the following expression:
$$I=dfrac{1}{8}biggl[sin^4tan^{-1}(sqrt{2x})biggr]_{0}^{1}=dfrac{1}{18}$$
To compute $sinarctan(sqrt{2})$, make use of the following easy to prove identity: $$sintan^{-1} x=dfrac{x}{sqrt{1+x^2}}$$
$endgroup$
add a comment |
$begingroup$
A much much easier way to solve it is by using integration by parts.
Hint: Take $u=x$, $dv = frac{dx}{(2x+1)^3}$.
$endgroup$
$begingroup$
$u$ but then $dv$?
$endgroup$
– manooooh
yesterday
$begingroup$
@manooooh What do you mean? I don't understand.
$endgroup$
– Haris Gusic
yesterday
$begingroup$
I am sorry, I understood that you used sub. My apologies.
$endgroup$
– manooooh
yesterday
add a comment |
$begingroup$
1) Observe: $$x= frac 12 times left ( (2x + 1) -1right).$$
2) Use this to obtain $$frac{x}{(2x+1)^3} = frac{1}{2} times frac{1}{(2x+1)^2} - frac 12 times frac{1}{(2x+1)^3}.$$
3) Integrate to get
$$ int frac{x}{(2x+1)^3} dx = -frac{1}{4} (2x+1)^{-1} + frac{1}{8} (2x+1)^{-2}.$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3120889%2fintegral-check-is-partial-fractions-the-only-way%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
5 Answers
5
active
oldest
votes
5 Answers
5
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
$$int_0^1 frac{xdx}{(2x+1)^3} =
int_0^1 frac{dx}{2(2x+1)^2} - int_0^1 frac{dx}{2(2x+1)^3}$$
$displaystyle int dfrac{dx}{2(2x+1)^2}:$
$qquad u=2x+1, x=dfrac{u-1}{2}, dx = dfrac 12 du$
$qquad displaystyle int dfrac{dx}{2(2x+1)^2} =
int dfrac{du}{4u^2} = -dfrac{1}{4u}$
$qquad x=0 mapsto u=1, x=1 mapsto u=3$
$qquad left[-dfrac{1}{4u} right]_1^3 = -dfrac{1}{12} + dfrac 14 = dfrac 16$
$displaystyle int dfrac{dx}{2(2x+1)^3}:$
$qquad u=2x+1, x=dfrac{u-1}{2}, dx = dfrac 12 du$
$qquad displaystyle int dfrac{dx}{2(2x+1)^3} =
int dfrac{du}{4u^3} = -dfrac{1}{8u^2}$
$qquad x=0 mapsto u=1, x=1 mapsto u=3$
$qquad left[-dfrac{1}{8u^2} right]_1^3 = -dfrac{1}{72} + dfrac 18 = dfrac 19$
$$int_0^1 frac{dx}{2(2x+1)^2} - int_0^1 frac{dx}{2(2x+1)^3}
= dfrac 16 - dfrac 19 = dfrac{1}{18}$$
$endgroup$
add a comment |
$begingroup$
$$int_0^1 frac{xdx}{(2x+1)^3} =
int_0^1 frac{dx}{2(2x+1)^2} - int_0^1 frac{dx}{2(2x+1)^3}$$
$displaystyle int dfrac{dx}{2(2x+1)^2}:$
$qquad u=2x+1, x=dfrac{u-1}{2}, dx = dfrac 12 du$
$qquad displaystyle int dfrac{dx}{2(2x+1)^2} =
int dfrac{du}{4u^2} = -dfrac{1}{4u}$
$qquad x=0 mapsto u=1, x=1 mapsto u=3$
$qquad left[-dfrac{1}{4u} right]_1^3 = -dfrac{1}{12} + dfrac 14 = dfrac 16$
$displaystyle int dfrac{dx}{2(2x+1)^3}:$
$qquad u=2x+1, x=dfrac{u-1}{2}, dx = dfrac 12 du$
$qquad displaystyle int dfrac{dx}{2(2x+1)^3} =
int dfrac{du}{4u^3} = -dfrac{1}{8u^2}$
$qquad x=0 mapsto u=1, x=1 mapsto u=3$
$qquad left[-dfrac{1}{8u^2} right]_1^3 = -dfrac{1}{72} + dfrac 18 = dfrac 19$
$$int_0^1 frac{dx}{2(2x+1)^2} - int_0^1 frac{dx}{2(2x+1)^3}
= dfrac 16 - dfrac 19 = dfrac{1}{18}$$
$endgroup$
add a comment |
$begingroup$
$$int_0^1 frac{xdx}{(2x+1)^3} =
int_0^1 frac{dx}{2(2x+1)^2} - int_0^1 frac{dx}{2(2x+1)^3}$$
$displaystyle int dfrac{dx}{2(2x+1)^2}:$
$qquad u=2x+1, x=dfrac{u-1}{2}, dx = dfrac 12 du$
$qquad displaystyle int dfrac{dx}{2(2x+1)^2} =
int dfrac{du}{4u^2} = -dfrac{1}{4u}$
$qquad x=0 mapsto u=1, x=1 mapsto u=3$
$qquad left[-dfrac{1}{4u} right]_1^3 = -dfrac{1}{12} + dfrac 14 = dfrac 16$
$displaystyle int dfrac{dx}{2(2x+1)^3}:$
$qquad u=2x+1, x=dfrac{u-1}{2}, dx = dfrac 12 du$
$qquad displaystyle int dfrac{dx}{2(2x+1)^3} =
int dfrac{du}{4u^3} = -dfrac{1}{8u^2}$
$qquad x=0 mapsto u=1, x=1 mapsto u=3$
$qquad left[-dfrac{1}{8u^2} right]_1^3 = -dfrac{1}{72} + dfrac 18 = dfrac 19$
$$int_0^1 frac{dx}{2(2x+1)^2} - int_0^1 frac{dx}{2(2x+1)^3}
= dfrac 16 - dfrac 19 = dfrac{1}{18}$$
$endgroup$
$$int_0^1 frac{xdx}{(2x+1)^3} =
int_0^1 frac{dx}{2(2x+1)^2} - int_0^1 frac{dx}{2(2x+1)^3}$$
$displaystyle int dfrac{dx}{2(2x+1)^2}:$
$qquad u=2x+1, x=dfrac{u-1}{2}, dx = dfrac 12 du$
$qquad displaystyle int dfrac{dx}{2(2x+1)^2} =
int dfrac{du}{4u^2} = -dfrac{1}{4u}$
$qquad x=0 mapsto u=1, x=1 mapsto u=3$
$qquad left[-dfrac{1}{4u} right]_1^3 = -dfrac{1}{12} + dfrac 14 = dfrac 16$
$displaystyle int dfrac{dx}{2(2x+1)^3}:$
$qquad u=2x+1, x=dfrac{u-1}{2}, dx = dfrac 12 du$
$qquad displaystyle int dfrac{dx}{2(2x+1)^3} =
int dfrac{du}{4u^3} = -dfrac{1}{8u^2}$
$qquad x=0 mapsto u=1, x=1 mapsto u=3$
$qquad left[-dfrac{1}{8u^2} right]_1^3 = -dfrac{1}{72} + dfrac 18 = dfrac 19$
$$int_0^1 frac{dx}{2(2x+1)^2} - int_0^1 frac{dx}{2(2x+1)^3}
= dfrac 16 - dfrac 19 = dfrac{1}{18}$$
answered 17 hours ago
steven gregorysteven gregory
18.2k32258
18.2k32258
add a comment |
add a comment |
$begingroup$
Hint: Substitute $x=tfrac12 u -tfrac12$
Addendum: Your original problem was $int_0^1frac{x; dx}{(2x+1)^3}$. For this substitution, compute:
Integrand: We have $x=tfrac12 u -tfrac12=tfrac12(u-1)$, so
$$frac{x}{(2x+1)^3}=frac{tfrac12(u-1)}{(2cdotfrac12(u-1)+1)^3}
=tfrac12frac{u-1}{u^3}=boxed{tfrac12left(u^{-2}-u^{-3}right)}$$
Differential: We have $x=tfrac12 u -tfrac12$, so
$$dx = dleft(tfrac12 u -tfrac12right)=boxed{tfrac12du}$$
Limits of integration: The limits for $x$ are $0$ and $1$, so we find the corresponding values of $u$:
$$x=0implies 0=tfrac12 u -tfrac12implies u=boxed{1}$$
$$x=1implies 1 = tfrac12 u -tfrac12 implies u=boxed{3}$$
So, replacing the integrand, differential, and limits with the boxed items above we have
$$int_0^1frac{x; dx}{(2x+1)^3} = int_1^3tfrac12left(u^{-2}-u^{-3}right) tfrac12du$$
$$=tfrac14int_1^3left(u^{-2}-u^{-3}right) du$$
$$=left.frac14left(-u^{-1}+tfrac12u^{-2} right)right]_1^3$$
$$=tfrac14[(-tfrac13+tfrac1{18})-(-1+tfrac12)]$$
$$=tfrac14[-tfrac{5}{18}+tfrac12]$$
$$=tfrac14[tfrac{4}{18}]$$
$$=boxed{tfrac{1}{18}}$$
This is the precise procedure you should follow for any substitution. Don't take shortcuts.
$endgroup$
$begingroup$
You beat me to it.
$endgroup$
– randomgirl
yesterday
$begingroup$
If I go your way, I wind up with $frac{1}{2} int frac{1}{u^2} - frac{1}{2} int frac{1}{u^3}$ which is different than what I have at some point. I can't see my error.
$endgroup$
– Jwan622
yesterday
2
$begingroup$
Falling way short on the "why" and leaning heavily on the "check out this trick"...
$endgroup$
– MichaelChirico
20 hours ago
1
$begingroup$
This is not a "trick" but a recognition of the entire idea behind $u$-substitution: there's a $(2x+1)^3$ in the denominator and $x = (2x+1)'/2$ in the numerator, so it really is a good idea to make the substitution $u = 2x+1$ here. Solving that integral by the method the OP proposed is extremely tedious by comparison.
$endgroup$
– KCd
20 hours ago
$begingroup$
It looks like your error is not computing $du$ correctly.
$endgroup$
– MPW
15 hours ago
add a comment |
$begingroup$
Hint: Substitute $x=tfrac12 u -tfrac12$
Addendum: Your original problem was $int_0^1frac{x; dx}{(2x+1)^3}$. For this substitution, compute:
Integrand: We have $x=tfrac12 u -tfrac12=tfrac12(u-1)$, so
$$frac{x}{(2x+1)^3}=frac{tfrac12(u-1)}{(2cdotfrac12(u-1)+1)^3}
=tfrac12frac{u-1}{u^3}=boxed{tfrac12left(u^{-2}-u^{-3}right)}$$
Differential: We have $x=tfrac12 u -tfrac12$, so
$$dx = dleft(tfrac12 u -tfrac12right)=boxed{tfrac12du}$$
Limits of integration: The limits for $x$ are $0$ and $1$, so we find the corresponding values of $u$:
$$x=0implies 0=tfrac12 u -tfrac12implies u=boxed{1}$$
$$x=1implies 1 = tfrac12 u -tfrac12 implies u=boxed{3}$$
So, replacing the integrand, differential, and limits with the boxed items above we have
$$int_0^1frac{x; dx}{(2x+1)^3} = int_1^3tfrac12left(u^{-2}-u^{-3}right) tfrac12du$$
$$=tfrac14int_1^3left(u^{-2}-u^{-3}right) du$$
$$=left.frac14left(-u^{-1}+tfrac12u^{-2} right)right]_1^3$$
$$=tfrac14[(-tfrac13+tfrac1{18})-(-1+tfrac12)]$$
$$=tfrac14[-tfrac{5}{18}+tfrac12]$$
$$=tfrac14[tfrac{4}{18}]$$
$$=boxed{tfrac{1}{18}}$$
This is the precise procedure you should follow for any substitution. Don't take shortcuts.
$endgroup$
$begingroup$
You beat me to it.
$endgroup$
– randomgirl
yesterday
$begingroup$
If I go your way, I wind up with $frac{1}{2} int frac{1}{u^2} - frac{1}{2} int frac{1}{u^3}$ which is different than what I have at some point. I can't see my error.
$endgroup$
– Jwan622
yesterday
2
$begingroup$
Falling way short on the "why" and leaning heavily on the "check out this trick"...
$endgroup$
– MichaelChirico
20 hours ago
1
$begingroup$
This is not a "trick" but a recognition of the entire idea behind $u$-substitution: there's a $(2x+1)^3$ in the denominator and $x = (2x+1)'/2$ in the numerator, so it really is a good idea to make the substitution $u = 2x+1$ here. Solving that integral by the method the OP proposed is extremely tedious by comparison.
$endgroup$
– KCd
20 hours ago
$begingroup$
It looks like your error is not computing $du$ correctly.
$endgroup$
– MPW
15 hours ago
add a comment |
$begingroup$
Hint: Substitute $x=tfrac12 u -tfrac12$
Addendum: Your original problem was $int_0^1frac{x; dx}{(2x+1)^3}$. For this substitution, compute:
Integrand: We have $x=tfrac12 u -tfrac12=tfrac12(u-1)$, so
$$frac{x}{(2x+1)^3}=frac{tfrac12(u-1)}{(2cdotfrac12(u-1)+1)^3}
=tfrac12frac{u-1}{u^3}=boxed{tfrac12left(u^{-2}-u^{-3}right)}$$
Differential: We have $x=tfrac12 u -tfrac12$, so
$$dx = dleft(tfrac12 u -tfrac12right)=boxed{tfrac12du}$$
Limits of integration: The limits for $x$ are $0$ and $1$, so we find the corresponding values of $u$:
$$x=0implies 0=tfrac12 u -tfrac12implies u=boxed{1}$$
$$x=1implies 1 = tfrac12 u -tfrac12 implies u=boxed{3}$$
So, replacing the integrand, differential, and limits with the boxed items above we have
$$int_0^1frac{x; dx}{(2x+1)^3} = int_1^3tfrac12left(u^{-2}-u^{-3}right) tfrac12du$$
$$=tfrac14int_1^3left(u^{-2}-u^{-3}right) du$$
$$=left.frac14left(-u^{-1}+tfrac12u^{-2} right)right]_1^3$$
$$=tfrac14[(-tfrac13+tfrac1{18})-(-1+tfrac12)]$$
$$=tfrac14[-tfrac{5}{18}+tfrac12]$$
$$=tfrac14[tfrac{4}{18}]$$
$$=boxed{tfrac{1}{18}}$$
This is the precise procedure you should follow for any substitution. Don't take shortcuts.
$endgroup$
Hint: Substitute $x=tfrac12 u -tfrac12$
Addendum: Your original problem was $int_0^1frac{x; dx}{(2x+1)^3}$. For this substitution, compute:
Integrand: We have $x=tfrac12 u -tfrac12=tfrac12(u-1)$, so
$$frac{x}{(2x+1)^3}=frac{tfrac12(u-1)}{(2cdotfrac12(u-1)+1)^3}
=tfrac12frac{u-1}{u^3}=boxed{tfrac12left(u^{-2}-u^{-3}right)}$$
Differential: We have $x=tfrac12 u -tfrac12$, so
$$dx = dleft(tfrac12 u -tfrac12right)=boxed{tfrac12du}$$
Limits of integration: The limits for $x$ are $0$ and $1$, so we find the corresponding values of $u$:
$$x=0implies 0=tfrac12 u -tfrac12implies u=boxed{1}$$
$$x=1implies 1 = tfrac12 u -tfrac12 implies u=boxed{3}$$
So, replacing the integrand, differential, and limits with the boxed items above we have
$$int_0^1frac{x; dx}{(2x+1)^3} = int_1^3tfrac12left(u^{-2}-u^{-3}right) tfrac12du$$
$$=tfrac14int_1^3left(u^{-2}-u^{-3}right) du$$
$$=left.frac14left(-u^{-1}+tfrac12u^{-2} right)right]_1^3$$
$$=tfrac14[(-tfrac13+tfrac1{18})-(-1+tfrac12)]$$
$$=tfrac14[-tfrac{5}{18}+tfrac12]$$
$$=tfrac14[tfrac{4}{18}]$$
$$=boxed{tfrac{1}{18}}$$
This is the precise procedure you should follow for any substitution. Don't take shortcuts.
edited 15 hours ago
answered yesterday
MPWMPW
30.3k12157
30.3k12157
$begingroup$
You beat me to it.
$endgroup$
– randomgirl
yesterday
$begingroup$
If I go your way, I wind up with $frac{1}{2} int frac{1}{u^2} - frac{1}{2} int frac{1}{u^3}$ which is different than what I have at some point. I can't see my error.
$endgroup$
– Jwan622
yesterday
2
$begingroup$
Falling way short on the "why" and leaning heavily on the "check out this trick"...
$endgroup$
– MichaelChirico
20 hours ago
1
$begingroup$
This is not a "trick" but a recognition of the entire idea behind $u$-substitution: there's a $(2x+1)^3$ in the denominator and $x = (2x+1)'/2$ in the numerator, so it really is a good idea to make the substitution $u = 2x+1$ here. Solving that integral by the method the OP proposed is extremely tedious by comparison.
$endgroup$
– KCd
20 hours ago
$begingroup$
It looks like your error is not computing $du$ correctly.
$endgroup$
– MPW
15 hours ago
add a comment |
$begingroup$
You beat me to it.
$endgroup$
– randomgirl
yesterday
$begingroup$
If I go your way, I wind up with $frac{1}{2} int frac{1}{u^2} - frac{1}{2} int frac{1}{u^3}$ which is different than what I have at some point. I can't see my error.
$endgroup$
– Jwan622
yesterday
2
$begingroup$
Falling way short on the "why" and leaning heavily on the "check out this trick"...
$endgroup$
– MichaelChirico
20 hours ago
1
$begingroup$
This is not a "trick" but a recognition of the entire idea behind $u$-substitution: there's a $(2x+1)^3$ in the denominator and $x = (2x+1)'/2$ in the numerator, so it really is a good idea to make the substitution $u = 2x+1$ here. Solving that integral by the method the OP proposed is extremely tedious by comparison.
$endgroup$
– KCd
20 hours ago
$begingroup$
It looks like your error is not computing $du$ correctly.
$endgroup$
– MPW
15 hours ago
$begingroup$
You beat me to it.
$endgroup$
– randomgirl
yesterday
$begingroup$
You beat me to it.
$endgroup$
– randomgirl
yesterday
$begingroup$
If I go your way, I wind up with $frac{1}{2} int frac{1}{u^2} - frac{1}{2} int frac{1}{u^3}$ which is different than what I have at some point. I can't see my error.
$endgroup$
– Jwan622
yesterday
$begingroup$
If I go your way, I wind up with $frac{1}{2} int frac{1}{u^2} - frac{1}{2} int frac{1}{u^3}$ which is different than what I have at some point. I can't see my error.
$endgroup$
– Jwan622
yesterday
2
2
$begingroup$
Falling way short on the "why" and leaning heavily on the "check out this trick"...
$endgroup$
– MichaelChirico
20 hours ago
$begingroup$
Falling way short on the "why" and leaning heavily on the "check out this trick"...
$endgroup$
– MichaelChirico
20 hours ago
1
1
$begingroup$
This is not a "trick" but a recognition of the entire idea behind $u$-substitution: there's a $(2x+1)^3$ in the denominator and $x = (2x+1)'/2$ in the numerator, so it really is a good idea to make the substitution $u = 2x+1$ here. Solving that integral by the method the OP proposed is extremely tedious by comparison.
$endgroup$
– KCd
20 hours ago
$begingroup$
This is not a "trick" but a recognition of the entire idea behind $u$-substitution: there's a $(2x+1)^3$ in the denominator and $x = (2x+1)'/2$ in the numerator, so it really is a good idea to make the substitution $u = 2x+1$ here. Solving that integral by the method the OP proposed is extremely tedious by comparison.
$endgroup$
– KCd
20 hours ago
$begingroup$
It looks like your error is not computing $du$ correctly.
$endgroup$
– MPW
15 hours ago
$begingroup$
It looks like your error is not computing $du$ correctly.
$endgroup$
– MPW
15 hours ago
add a comment |
$begingroup$
You've computed the integral correctly, probably you made a mistake while substituting in the limits of integration. Everything else upto that point is correct.
Is partial fractions the only way?
No single way is the only way, you have tons of ways to do this integral. Have a look at the following approaches.
Manipulation and U-Substitution
- Make the substitution $begin{bmatrix}t \ mathrm dt end{bmatrix}=begin{bmatrix}2x+1 \ 2mathrm dxend{bmatrix}$
- Use the General Power Rule for Integrals
$$I=int_{0}^{1}dfrac{x mathrm dx}{(2x+1)^3}implies 2I=int_{0}^{1}dfrac{2x+1-1}{(2x+1)^3}mathrm dx$$ $$2I=int_{0}^{1}biggl[dfrac{1}{(2x+1)^2}-dfrac{1}{(2x+1)^3}biggr] mathrm dx $$
- Make the substitution $begin{bmatrix}t \ mathrm dt end{bmatrix}=begin{bmatrix}2x+1 \ 2mathrm dxend{bmatrix}$
$$implies I=dfrac{1}{4}biggl[-dfrac{1}{t}+dfrac{1}{2t^2}biggr]_{1}^{3}=dfrac{1}{18}$$
Trigonometric Substitution
- Make the substitution $begin{bmatrix}x \ mathrm dxend{bmatrix}=begin{bmatrix}1/2cdottan^2 theta\tanthetasec^2thetamathrm dthetaend{bmatrix}$
- Use the Pythagorean Identity involving tangent and secant functions namely $sec^2theta=1+tan^2theta$ to get $2x+1=sec^2theta$.
- Make the substitution $begin{bmatrix}x \ mathrm dxend{bmatrix}=begin{bmatrix}1/2cdottan^2 theta\tanthetasec^2thetamathrm dthetaend{bmatrix}$
$$I=int_{0}^{1}dfrac{xmathrm dx}{(2x+1)^3}=int_{0}^{sqrt{2}}dfrac{tan^3theta sec^2theta}{sec^6theta}mathrm dtheta$$
Using the definitions of $tantheta=sintheta/costheta$ and $sectheta=1/costheta$. The integral simplifies to the following form: $$I=int_{0}^{sqrt{2}}sin^3thetacosthetamathrm dtheta=int_{0}^{sqrt{2}}sin^3theta cdotmathrm d(sintheta)$$
Again use the General Power Formula for Integrals to get the following expression:
$$I=dfrac{1}{8}biggl[sin^4tan^{-1}(sqrt{2x})biggr]_{0}^{1}=dfrac{1}{18}$$
To compute $sinarctan(sqrt{2})$, make use of the following easy to prove identity: $$sintan^{-1} x=dfrac{x}{sqrt{1+x^2}}$$
$endgroup$
add a comment |
$begingroup$
You've computed the integral correctly, probably you made a mistake while substituting in the limits of integration. Everything else upto that point is correct.
Is partial fractions the only way?
No single way is the only way, you have tons of ways to do this integral. Have a look at the following approaches.
Manipulation and U-Substitution
- Make the substitution $begin{bmatrix}t \ mathrm dt end{bmatrix}=begin{bmatrix}2x+1 \ 2mathrm dxend{bmatrix}$
- Use the General Power Rule for Integrals
$$I=int_{0}^{1}dfrac{x mathrm dx}{(2x+1)^3}implies 2I=int_{0}^{1}dfrac{2x+1-1}{(2x+1)^3}mathrm dx$$ $$2I=int_{0}^{1}biggl[dfrac{1}{(2x+1)^2}-dfrac{1}{(2x+1)^3}biggr] mathrm dx $$
- Make the substitution $begin{bmatrix}t \ mathrm dt end{bmatrix}=begin{bmatrix}2x+1 \ 2mathrm dxend{bmatrix}$
$$implies I=dfrac{1}{4}biggl[-dfrac{1}{t}+dfrac{1}{2t^2}biggr]_{1}^{3}=dfrac{1}{18}$$
Trigonometric Substitution
- Make the substitution $begin{bmatrix}x \ mathrm dxend{bmatrix}=begin{bmatrix}1/2cdottan^2 theta\tanthetasec^2thetamathrm dthetaend{bmatrix}$
- Use the Pythagorean Identity involving tangent and secant functions namely $sec^2theta=1+tan^2theta$ to get $2x+1=sec^2theta$.
- Make the substitution $begin{bmatrix}x \ mathrm dxend{bmatrix}=begin{bmatrix}1/2cdottan^2 theta\tanthetasec^2thetamathrm dthetaend{bmatrix}$
$$I=int_{0}^{1}dfrac{xmathrm dx}{(2x+1)^3}=int_{0}^{sqrt{2}}dfrac{tan^3theta sec^2theta}{sec^6theta}mathrm dtheta$$
Using the definitions of $tantheta=sintheta/costheta$ and $sectheta=1/costheta$. The integral simplifies to the following form: $$I=int_{0}^{sqrt{2}}sin^3thetacosthetamathrm dtheta=int_{0}^{sqrt{2}}sin^3theta cdotmathrm d(sintheta)$$
Again use the General Power Formula for Integrals to get the following expression:
$$I=dfrac{1}{8}biggl[sin^4tan^{-1}(sqrt{2x})biggr]_{0}^{1}=dfrac{1}{18}$$
To compute $sinarctan(sqrt{2})$, make use of the following easy to prove identity: $$sintan^{-1} x=dfrac{x}{sqrt{1+x^2}}$$
$endgroup$
add a comment |
$begingroup$
You've computed the integral correctly, probably you made a mistake while substituting in the limits of integration. Everything else upto that point is correct.
Is partial fractions the only way?
No single way is the only way, you have tons of ways to do this integral. Have a look at the following approaches.
Manipulation and U-Substitution
- Make the substitution $begin{bmatrix}t \ mathrm dt end{bmatrix}=begin{bmatrix}2x+1 \ 2mathrm dxend{bmatrix}$
- Use the General Power Rule for Integrals
$$I=int_{0}^{1}dfrac{x mathrm dx}{(2x+1)^3}implies 2I=int_{0}^{1}dfrac{2x+1-1}{(2x+1)^3}mathrm dx$$ $$2I=int_{0}^{1}biggl[dfrac{1}{(2x+1)^2}-dfrac{1}{(2x+1)^3}biggr] mathrm dx $$
- Make the substitution $begin{bmatrix}t \ mathrm dt end{bmatrix}=begin{bmatrix}2x+1 \ 2mathrm dxend{bmatrix}$
$$implies I=dfrac{1}{4}biggl[-dfrac{1}{t}+dfrac{1}{2t^2}biggr]_{1}^{3}=dfrac{1}{18}$$
Trigonometric Substitution
- Make the substitution $begin{bmatrix}x \ mathrm dxend{bmatrix}=begin{bmatrix}1/2cdottan^2 theta\tanthetasec^2thetamathrm dthetaend{bmatrix}$
- Use the Pythagorean Identity involving tangent and secant functions namely $sec^2theta=1+tan^2theta$ to get $2x+1=sec^2theta$.
- Make the substitution $begin{bmatrix}x \ mathrm dxend{bmatrix}=begin{bmatrix}1/2cdottan^2 theta\tanthetasec^2thetamathrm dthetaend{bmatrix}$
$$I=int_{0}^{1}dfrac{xmathrm dx}{(2x+1)^3}=int_{0}^{sqrt{2}}dfrac{tan^3theta sec^2theta}{sec^6theta}mathrm dtheta$$
Using the definitions of $tantheta=sintheta/costheta$ and $sectheta=1/costheta$. The integral simplifies to the following form: $$I=int_{0}^{sqrt{2}}sin^3thetacosthetamathrm dtheta=int_{0}^{sqrt{2}}sin^3theta cdotmathrm d(sintheta)$$
Again use the General Power Formula for Integrals to get the following expression:
$$I=dfrac{1}{8}biggl[sin^4tan^{-1}(sqrt{2x})biggr]_{0}^{1}=dfrac{1}{18}$$
To compute $sinarctan(sqrt{2})$, make use of the following easy to prove identity: $$sintan^{-1} x=dfrac{x}{sqrt{1+x^2}}$$
$endgroup$
You've computed the integral correctly, probably you made a mistake while substituting in the limits of integration. Everything else upto that point is correct.
Is partial fractions the only way?
No single way is the only way, you have tons of ways to do this integral. Have a look at the following approaches.
Manipulation and U-Substitution
- Make the substitution $begin{bmatrix}t \ mathrm dt end{bmatrix}=begin{bmatrix}2x+1 \ 2mathrm dxend{bmatrix}$
- Use the General Power Rule for Integrals
$$I=int_{0}^{1}dfrac{x mathrm dx}{(2x+1)^3}implies 2I=int_{0}^{1}dfrac{2x+1-1}{(2x+1)^3}mathrm dx$$ $$2I=int_{0}^{1}biggl[dfrac{1}{(2x+1)^2}-dfrac{1}{(2x+1)^3}biggr] mathrm dx $$
- Make the substitution $begin{bmatrix}t \ mathrm dt end{bmatrix}=begin{bmatrix}2x+1 \ 2mathrm dxend{bmatrix}$
$$implies I=dfrac{1}{4}biggl[-dfrac{1}{t}+dfrac{1}{2t^2}biggr]_{1}^{3}=dfrac{1}{18}$$
Trigonometric Substitution
- Make the substitution $begin{bmatrix}x \ mathrm dxend{bmatrix}=begin{bmatrix}1/2cdottan^2 theta\tanthetasec^2thetamathrm dthetaend{bmatrix}$
- Use the Pythagorean Identity involving tangent and secant functions namely $sec^2theta=1+tan^2theta$ to get $2x+1=sec^2theta$.
- Make the substitution $begin{bmatrix}x \ mathrm dxend{bmatrix}=begin{bmatrix}1/2cdottan^2 theta\tanthetasec^2thetamathrm dthetaend{bmatrix}$
$$I=int_{0}^{1}dfrac{xmathrm dx}{(2x+1)^3}=int_{0}^{sqrt{2}}dfrac{tan^3theta sec^2theta}{sec^6theta}mathrm dtheta$$
Using the definitions of $tantheta=sintheta/costheta$ and $sectheta=1/costheta$. The integral simplifies to the following form: $$I=int_{0}^{sqrt{2}}sin^3thetacosthetamathrm dtheta=int_{0}^{sqrt{2}}sin^3theta cdotmathrm d(sintheta)$$
Again use the General Power Formula for Integrals to get the following expression:
$$I=dfrac{1}{8}biggl[sin^4tan^{-1}(sqrt{2x})biggr]_{0}^{1}=dfrac{1}{18}$$
To compute $sinarctan(sqrt{2})$, make use of the following easy to prove identity: $$sintan^{-1} x=dfrac{x}{sqrt{1+x^2}}$$
edited 23 mins ago
answered yesterday
Paras KhoslaParas Khosla
880214
880214
add a comment |
add a comment |
$begingroup$
A much much easier way to solve it is by using integration by parts.
Hint: Take $u=x$, $dv = frac{dx}{(2x+1)^3}$.
$endgroup$
$begingroup$
$u$ but then $dv$?
$endgroup$
– manooooh
yesterday
$begingroup$
@manooooh What do you mean? I don't understand.
$endgroup$
– Haris Gusic
yesterday
$begingroup$
I am sorry, I understood that you used sub. My apologies.
$endgroup$
– manooooh
yesterday
add a comment |
$begingroup$
A much much easier way to solve it is by using integration by parts.
Hint: Take $u=x$, $dv = frac{dx}{(2x+1)^3}$.
$endgroup$
$begingroup$
$u$ but then $dv$?
$endgroup$
– manooooh
yesterday
$begingroup$
@manooooh What do you mean? I don't understand.
$endgroup$
– Haris Gusic
yesterday
$begingroup$
I am sorry, I understood that you used sub. My apologies.
$endgroup$
– manooooh
yesterday
add a comment |
$begingroup$
A much much easier way to solve it is by using integration by parts.
Hint: Take $u=x$, $dv = frac{dx}{(2x+1)^3}$.
$endgroup$
A much much easier way to solve it is by using integration by parts.
Hint: Take $u=x$, $dv = frac{dx}{(2x+1)^3}$.
answered yesterday
Haris GusicHaris Gusic
1,182116
1,182116
$begingroup$
$u$ but then $dv$?
$endgroup$
– manooooh
yesterday
$begingroup$
@manooooh What do you mean? I don't understand.
$endgroup$
– Haris Gusic
yesterday
$begingroup$
I am sorry, I understood that you used sub. My apologies.
$endgroup$
– manooooh
yesterday
add a comment |
$begingroup$
$u$ but then $dv$?
$endgroup$
– manooooh
yesterday
$begingroup$
@manooooh What do you mean? I don't understand.
$endgroup$
– Haris Gusic
yesterday
$begingroup$
I am sorry, I understood that you used sub. My apologies.
$endgroup$
– manooooh
yesterday
$begingroup$
$u$ but then $dv$?
$endgroup$
– manooooh
yesterday
$begingroup$
$u$ but then $dv$?
$endgroup$
– manooooh
yesterday
$begingroup$
@manooooh What do you mean? I don't understand.
$endgroup$
– Haris Gusic
yesterday
$begingroup$
@manooooh What do you mean? I don't understand.
$endgroup$
– Haris Gusic
yesterday
$begingroup$
I am sorry, I understood that you used sub. My apologies.
$endgroup$
– manooooh
yesterday
$begingroup$
I am sorry, I understood that you used sub. My apologies.
$endgroup$
– manooooh
yesterday
add a comment |
$begingroup$
1) Observe: $$x= frac 12 times left ( (2x + 1) -1right).$$
2) Use this to obtain $$frac{x}{(2x+1)^3} = frac{1}{2} times frac{1}{(2x+1)^2} - frac 12 times frac{1}{(2x+1)^3}.$$
3) Integrate to get
$$ int frac{x}{(2x+1)^3} dx = -frac{1}{4} (2x+1)^{-1} + frac{1}{8} (2x+1)^{-2}.$$
$endgroup$
add a comment |
$begingroup$
1) Observe: $$x= frac 12 times left ( (2x + 1) -1right).$$
2) Use this to obtain $$frac{x}{(2x+1)^3} = frac{1}{2} times frac{1}{(2x+1)^2} - frac 12 times frac{1}{(2x+1)^3}.$$
3) Integrate to get
$$ int frac{x}{(2x+1)^3} dx = -frac{1}{4} (2x+1)^{-1} + frac{1}{8} (2x+1)^{-2}.$$
$endgroup$
add a comment |
$begingroup$
1) Observe: $$x= frac 12 times left ( (2x + 1) -1right).$$
2) Use this to obtain $$frac{x}{(2x+1)^3} = frac{1}{2} times frac{1}{(2x+1)^2} - frac 12 times frac{1}{(2x+1)^3}.$$
3) Integrate to get
$$ int frac{x}{(2x+1)^3} dx = -frac{1}{4} (2x+1)^{-1} + frac{1}{8} (2x+1)^{-2}.$$
$endgroup$
1) Observe: $$x= frac 12 times left ( (2x + 1) -1right).$$
2) Use this to obtain $$frac{x}{(2x+1)^3} = frac{1}{2} times frac{1}{(2x+1)^2} - frac 12 times frac{1}{(2x+1)^3}.$$
3) Integrate to get
$$ int frac{x}{(2x+1)^3} dx = -frac{1}{4} (2x+1)^{-1} + frac{1}{8} (2x+1)^{-2}.$$
answered yesterday
FnacoolFnacool
5,031511
5,031511
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3120889%2fintegral-check-is-partial-fractions-the-only-way%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
I can't see any mistake in your work. What's the answer given by wolfram?
$endgroup$
– Thomas Shelby
yesterday
$begingroup$
They have 1/18 as the answer @ThomasShelby
$endgroup$
– Jwan622
yesterday
2
$begingroup$
Please recheck your calculations. I'm getting $frac1 {18} $ when I substitute the numbers.
$endgroup$
– Thomas Shelby
yesterday