Gulielmus Godwin

Multi tool use

Gulielmus Godwin
Res apud Vicidata repertae:
Nativitas:
3 Martii 1756;
WisbechObitus:
7 Aprilis 1836;
LondiniumPatria:
Regnum Britanniarum, Kingdom of Great Britain
Officium
Munus: Scriptor, political philosopher, mythistoricus, philosophus, diurnarius, science fiction writer
Consociatio
Religio: atheismus
Familia
Coniunx: Maria Wollstonecraft, Mary Jane Godwin
Proles: Maria Shelley, William Godwin the Younger
Memoria
Sepultura: St Pancras Old Church

Gulielmus Godwin. Iacobus Northcote anno 1802 fecit. Opus in National Portrait Gallery servatur
Gulielmus Godwin (natus die 3 Martii 1756 in Wisbech , Comitatus Cantabrigiensis; mortuus Londinii die 7 Aprilis 1836) fuit anarchista et scriptor Anglicus qui de philosophia politica et consequentialismo scripsit. Maritus Mariae Wollenstonecraft factus est tamen ipsum matrimonium opponebat.
Bibliographia |
- K. Paul, William Godwin, his friends and contemporaries. 2 vol. Londinii, 1876
- Mark Philp et al., edd. The Collected Novels and Memoirs of William Godwin. 8 voll. Londinii: Pickering and Chatto, 1992
- Mark Philp, "William Godwin" (2013) in Stanford Encyclopedia of Philosophy ~ .mw-parser-output .existinglinksgray a,.mw-parser-output .existinglinksgray a:visited{color:gray}.mw-parser-output .existinglinksgray a.new{color:#ba0000}.mw-parser-output .existinglinksgray a.new:visited{color:#a55858}
(Anglice)
- Mark Philp et al., edd. Political and Philosophical Writings of William Godwin. 7 voll. Londinii: Pickering and Chatto, 1993
Nexus externi |
- Gulielmus Godwin: Enquiry concerning political Justice (textus integralis)
Godwin, De Gulielmo Godwin in fontibus Anarchismi Germanici
.mw-parser-output .stipula{padding:3px;background:#F7F8FF;border:1px solid grey;margin:auto}.mw-parser-output .stipula td.cell1{background:transparent;color:white}

|
Haec stipula ad biographiam spectat. Amplifica, si potes!
|
n1zkztEr,nO033b2pBxGAA FD9NxX9Aa5KzQ8Hx,ESp 9Gj,Gop9dK,sqBzgmMxcvswep4Q fbJrGy
Popular posts from this blog
Tabula multilinguis Rosettana in Museo Britannico ostenditur. Tabula Rosettana, [1] etiam titulo OGIS 90 agnita, est stela decreto de rebus sacris in Aegypto anno 196 a.C.n. lato inscripta. Tabula iuxta Rosettam Aegypti, urbem in delta Nili et ad oram maris Mediterranei iacentem, anno 1799 a milite Francico reperta est. Inventio stelae, linguis duabus scripturisque tribus inscriptae, eruditis Instituti Aegypti statim nuntiata est; ibi enim iussu imperatoris Napoleonis eruditi omnium scientiarum (sub aegide Commissionis Scientiarum et Artium) properaverant cum expeditione Francica. Qua a Britannis mox debellata, tabula Rosettana Londinium missa hodie apud Museum Britannicum iacet. Textus Graecus cito lectus interpretationi textuum Aegyptiorum (in formis hieroglyphica et demotica expressorum) gradatim adiuvit. Denique textum plene interpretatus est Ioannes Franciscus Champollion. Ab opere eruditorum cumulativo coepit hodiernus scripturae hieroglyphicae linguaeque Aegyptiae a...
1
$begingroup$
This is what I mean as document text image: I want to label the texts in image as separate blocks and my model should detect these labels as classes. NOTE: This is how the end result should be like: The labels like Block 1, Block 2, Block 3,.. should be Logo, Title, Date,.. Others, etc. Work done: First approach : I tried to implement this method via Object Detection, it didn't work. It didn't even detect any text. Second approach : Then I tried it using PixelLink. As this model is build for scene text detection, it detected each and every text in the image. But this method can detect multiple lines of text if the threshold values are increased. But I have no idea how do I add labels to the text blocks. PIXEL_CLS_WEIGHT_all_ones = 'PIXEL_CLS_WEIGHT_all_ones' PIXEL_C...
1
$begingroup$
I have this LSTM model model = Sequential() model.add(Masking(mask_value=0, input_shape=(timesteps, features))) model.add(LSTM(100, dropout=0.2, recurrent_dropout=0.2, return_sequences=False)) model.add(Dense(features, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) and shapes X_train (21, 11, 5), y_train (21, 5) . Each timestep is represented by 5 features and return_sequences is set to False because I want to predict one 5D array (the next timestep) for each input sequence of 11 timesteps. I get the error ValueError: y_true and y_pred have different number of output (5!=1) If I reshape the data as X_train (21, 11, 5), y_train (21, 1, 5) instead I get the error ValueError: Inva...