Keras multi input model loss plummets, doesn't train
$begingroup$
While using keras's multi-input model, the model just doesn't train at all. The accuracy skyrockets to near 100% and the loss plummets, so I think there's something wrong with the data generation.
I'm using a multi-input keras model, with two images of the same object, just rotated. The plan is to run each image through it's own CNN, then concatenate the two flattened layers and classify the object.
I prepare the data using the method found (here)[https://github.com/keras-team/keras/issues/8130]. The images are in separate directories but with the same seeding, they get loaded correctly. The labels are also correct, I've checked by looking at the filenames and the directories that the ImageDataGenerator generates.
The model is simple enough, I don't think it's causing the problem
def multiInput_model():
#create model - custom
input_1 = Input(shape=(img_width,img_height,1))
input_2 = Input(shape=(img_width,img_height,1))
output_1 = Conv2D(32,(5,5), activation='relu')(input_1)
output_1 = BatchNormalization()(output_1)
output_1 = MaxPooling2D(pool_size=(2,2))(output_1)
output_1 = Dropout(0.4)(output_1)
output_1 = Flatten()(output_1)
output_2 = Conv2D(32,(5,5), activation='relu')(input_2)
output_2 = BatchNormalization()(output_2)
output_2 = MaxPooling2D(pool_size=(2,2))(output_2)
output_2 = Dropout(0.4)(output_2)
output_2 = Flatten()(output_2)
inputs = [input_1,input_2]
outputs = [output_1,output_2]
combine = concatenate(outputs)
output = Dense(32,activation='relu')(combine)
output = Dense(num_classes,activation='softmax')(output)
model = Model(inputs,[output])
model.compile(loss='categorical_crossentropy',
optimizer='RMSprop',metrics=['accuracy'])
return model
The image generators are as follows
def generate_generator_multiple(generator,dir1, dir2, batch_size, img_width,img_height,subset):
genX1 = generator.flow_from_directory(dir1,
color_mode='grayscale',
target_size=
(img_width,img_height),
batch_size=batch_size,
class_mode='categorical',
shuffle=False,
subset=subset,
seed=1)
#Same seed for consistency.
genX2 = generator.flow_from_directory(dir2,
color_mode='grayscale',
target_size=
(img_width,img_height),
batch_size=batch_size,
class_mode='categorical',
shuffle=False,
subset=subset,
seed=1)
while True:
X1i = genX1.next()
X2i = genX2.next()
yield [X1i[0],X2i[0]],X1i[1] #Yields both images and their mutual label
train_generator =
generate_generator_multiple(generator=train_datagen,
dir1=train_data_dirA,
dir2=train_data_dirB,
batch_size=batch_size,
img_width=img_width,
img_height=img_height,
subset='training')
validation_generator =
generate_generator_multiple(generator=train_datagen,
dir1=train_data_dirA,
dir2=train_data_dirB,
batch_size=batch_size,
img_width=img_width,
img_height=img_height,
subset='validation')
The output is always like this
20/20 [==============================] - 4s 183ms/step - loss: 0.1342 - acc: 0.9500 - val_loss: 1.1921e-07 - val_acc: 1.0000
Epoch 2/20
20/20 [==============================] - 0s 22ms/step - loss: 1.1921e-07 - acc: 1.0000 - val_loss: 8.0590 - val_acc: 0.5000
Epoch 3/20
20/20 [==============================] - 0s 22ms/step - loss: 1.1921e-07 - acc: 1.0000 - val_loss: 16.1181 - val_acc: 0.0000e+00
Epoch 4/20
20/20 [==============================] - 0s 22ms/step - loss: 8.0590 - acc: 0.5000 - val_loss: 16.1181 - val_acc: 0.0000e+00
python keras
$endgroup$
add a comment |
$begingroup$
While using keras's multi-input model, the model just doesn't train at all. The accuracy skyrockets to near 100% and the loss plummets, so I think there's something wrong with the data generation.
I'm using a multi-input keras model, with two images of the same object, just rotated. The plan is to run each image through it's own CNN, then concatenate the two flattened layers and classify the object.
I prepare the data using the method found (here)[https://github.com/keras-team/keras/issues/8130]. The images are in separate directories but with the same seeding, they get loaded correctly. The labels are also correct, I've checked by looking at the filenames and the directories that the ImageDataGenerator generates.
The model is simple enough, I don't think it's causing the problem
def multiInput_model():
#create model - custom
input_1 = Input(shape=(img_width,img_height,1))
input_2 = Input(shape=(img_width,img_height,1))
output_1 = Conv2D(32,(5,5), activation='relu')(input_1)
output_1 = BatchNormalization()(output_1)
output_1 = MaxPooling2D(pool_size=(2,2))(output_1)
output_1 = Dropout(0.4)(output_1)
output_1 = Flatten()(output_1)
output_2 = Conv2D(32,(5,5), activation='relu')(input_2)
output_2 = BatchNormalization()(output_2)
output_2 = MaxPooling2D(pool_size=(2,2))(output_2)
output_2 = Dropout(0.4)(output_2)
output_2 = Flatten()(output_2)
inputs = [input_1,input_2]
outputs = [output_1,output_2]
combine = concatenate(outputs)
output = Dense(32,activation='relu')(combine)
output = Dense(num_classes,activation='softmax')(output)
model = Model(inputs,[output])
model.compile(loss='categorical_crossentropy',
optimizer='RMSprop',metrics=['accuracy'])
return model
The image generators are as follows
def generate_generator_multiple(generator,dir1, dir2, batch_size, img_width,img_height,subset):
genX1 = generator.flow_from_directory(dir1,
color_mode='grayscale',
target_size=
(img_width,img_height),
batch_size=batch_size,
class_mode='categorical',
shuffle=False,
subset=subset,
seed=1)
#Same seed for consistency.
genX2 = generator.flow_from_directory(dir2,
color_mode='grayscale',
target_size=
(img_width,img_height),
batch_size=batch_size,
class_mode='categorical',
shuffle=False,
subset=subset,
seed=1)
while True:
X1i = genX1.next()
X2i = genX2.next()
yield [X1i[0],X2i[0]],X1i[1] #Yields both images and their mutual label
train_generator =
generate_generator_multiple(generator=train_datagen,
dir1=train_data_dirA,
dir2=train_data_dirB,
batch_size=batch_size,
img_width=img_width,
img_height=img_height,
subset='training')
validation_generator =
generate_generator_multiple(generator=train_datagen,
dir1=train_data_dirA,
dir2=train_data_dirB,
batch_size=batch_size,
img_width=img_width,
img_height=img_height,
subset='validation')
The output is always like this
20/20 [==============================] - 4s 183ms/step - loss: 0.1342 - acc: 0.9500 - val_loss: 1.1921e-07 - val_acc: 1.0000
Epoch 2/20
20/20 [==============================] - 0s 22ms/step - loss: 1.1921e-07 - acc: 1.0000 - val_loss: 8.0590 - val_acc: 0.5000
Epoch 3/20
20/20 [==============================] - 0s 22ms/step - loss: 1.1921e-07 - acc: 1.0000 - val_loss: 16.1181 - val_acc: 0.0000e+00
Epoch 4/20
20/20 [==============================] - 0s 22ms/step - loss: 8.0590 - acc: 0.5000 - val_loss: 16.1181 - val_acc: 0.0000e+00
python keras
$endgroup$
add a comment |
$begingroup$
While using keras's multi-input model, the model just doesn't train at all. The accuracy skyrockets to near 100% and the loss plummets, so I think there's something wrong with the data generation.
I'm using a multi-input keras model, with two images of the same object, just rotated. The plan is to run each image through it's own CNN, then concatenate the two flattened layers and classify the object.
I prepare the data using the method found (here)[https://github.com/keras-team/keras/issues/8130]. The images are in separate directories but with the same seeding, they get loaded correctly. The labels are also correct, I've checked by looking at the filenames and the directories that the ImageDataGenerator generates.
The model is simple enough, I don't think it's causing the problem
def multiInput_model():
#create model - custom
input_1 = Input(shape=(img_width,img_height,1))
input_2 = Input(shape=(img_width,img_height,1))
output_1 = Conv2D(32,(5,5), activation='relu')(input_1)
output_1 = BatchNormalization()(output_1)
output_1 = MaxPooling2D(pool_size=(2,2))(output_1)
output_1 = Dropout(0.4)(output_1)
output_1 = Flatten()(output_1)
output_2 = Conv2D(32,(5,5), activation='relu')(input_2)
output_2 = BatchNormalization()(output_2)
output_2 = MaxPooling2D(pool_size=(2,2))(output_2)
output_2 = Dropout(0.4)(output_2)
output_2 = Flatten()(output_2)
inputs = [input_1,input_2]
outputs = [output_1,output_2]
combine = concatenate(outputs)
output = Dense(32,activation='relu')(combine)
output = Dense(num_classes,activation='softmax')(output)
model = Model(inputs,[output])
model.compile(loss='categorical_crossentropy',
optimizer='RMSprop',metrics=['accuracy'])
return model
The image generators are as follows
def generate_generator_multiple(generator,dir1, dir2, batch_size, img_width,img_height,subset):
genX1 = generator.flow_from_directory(dir1,
color_mode='grayscale',
target_size=
(img_width,img_height),
batch_size=batch_size,
class_mode='categorical',
shuffle=False,
subset=subset,
seed=1)
#Same seed for consistency.
genX2 = generator.flow_from_directory(dir2,
color_mode='grayscale',
target_size=
(img_width,img_height),
batch_size=batch_size,
class_mode='categorical',
shuffle=False,
subset=subset,
seed=1)
while True:
X1i = genX1.next()
X2i = genX2.next()
yield [X1i[0],X2i[0]],X1i[1] #Yields both images and their mutual label
train_generator =
generate_generator_multiple(generator=train_datagen,
dir1=train_data_dirA,
dir2=train_data_dirB,
batch_size=batch_size,
img_width=img_width,
img_height=img_height,
subset='training')
validation_generator =
generate_generator_multiple(generator=train_datagen,
dir1=train_data_dirA,
dir2=train_data_dirB,
batch_size=batch_size,
img_width=img_width,
img_height=img_height,
subset='validation')
The output is always like this
20/20 [==============================] - 4s 183ms/step - loss: 0.1342 - acc: 0.9500 - val_loss: 1.1921e-07 - val_acc: 1.0000
Epoch 2/20
20/20 [==============================] - 0s 22ms/step - loss: 1.1921e-07 - acc: 1.0000 - val_loss: 8.0590 - val_acc: 0.5000
Epoch 3/20
20/20 [==============================] - 0s 22ms/step - loss: 1.1921e-07 - acc: 1.0000 - val_loss: 16.1181 - val_acc: 0.0000e+00
Epoch 4/20
20/20 [==============================] - 0s 22ms/step - loss: 8.0590 - acc: 0.5000 - val_loss: 16.1181 - val_acc: 0.0000e+00
python keras
$endgroup$
While using keras's multi-input model, the model just doesn't train at all. The accuracy skyrockets to near 100% and the loss plummets, so I think there's something wrong with the data generation.
I'm using a multi-input keras model, with two images of the same object, just rotated. The plan is to run each image through it's own CNN, then concatenate the two flattened layers and classify the object.
I prepare the data using the method found (here)[https://github.com/keras-team/keras/issues/8130]. The images are in separate directories but with the same seeding, they get loaded correctly. The labels are also correct, I've checked by looking at the filenames and the directories that the ImageDataGenerator generates.
The model is simple enough, I don't think it's causing the problem
def multiInput_model():
#create model - custom
input_1 = Input(shape=(img_width,img_height,1))
input_2 = Input(shape=(img_width,img_height,1))
output_1 = Conv2D(32,(5,5), activation='relu')(input_1)
output_1 = BatchNormalization()(output_1)
output_1 = MaxPooling2D(pool_size=(2,2))(output_1)
output_1 = Dropout(0.4)(output_1)
output_1 = Flatten()(output_1)
output_2 = Conv2D(32,(5,5), activation='relu')(input_2)
output_2 = BatchNormalization()(output_2)
output_2 = MaxPooling2D(pool_size=(2,2))(output_2)
output_2 = Dropout(0.4)(output_2)
output_2 = Flatten()(output_2)
inputs = [input_1,input_2]
outputs = [output_1,output_2]
combine = concatenate(outputs)
output = Dense(32,activation='relu')(combine)
output = Dense(num_classes,activation='softmax')(output)
model = Model(inputs,[output])
model.compile(loss='categorical_crossentropy',
optimizer='RMSprop',metrics=['accuracy'])
return model
The image generators are as follows
def generate_generator_multiple(generator,dir1, dir2, batch_size, img_width,img_height,subset):
genX1 = generator.flow_from_directory(dir1,
color_mode='grayscale',
target_size=
(img_width,img_height),
batch_size=batch_size,
class_mode='categorical',
shuffle=False,
subset=subset,
seed=1)
#Same seed for consistency.
genX2 = generator.flow_from_directory(dir2,
color_mode='grayscale',
target_size=
(img_width,img_height),
batch_size=batch_size,
class_mode='categorical',
shuffle=False,
subset=subset,
seed=1)
while True:
X1i = genX1.next()
X2i = genX2.next()
yield [X1i[0],X2i[0]],X1i[1] #Yields both images and their mutual label
train_generator =
generate_generator_multiple(generator=train_datagen,
dir1=train_data_dirA,
dir2=train_data_dirB,
batch_size=batch_size,
img_width=img_width,
img_height=img_height,
subset='training')
validation_generator =
generate_generator_multiple(generator=train_datagen,
dir1=train_data_dirA,
dir2=train_data_dirB,
batch_size=batch_size,
img_width=img_width,
img_height=img_height,
subset='validation')
The output is always like this
20/20 [==============================] - 4s 183ms/step - loss: 0.1342 - acc: 0.9500 - val_loss: 1.1921e-07 - val_acc: 1.0000
Epoch 2/20
20/20 [==============================] - 0s 22ms/step - loss: 1.1921e-07 - acc: 1.0000 - val_loss: 8.0590 - val_acc: 0.5000
Epoch 3/20
20/20 [==============================] - 0s 22ms/step - loss: 1.1921e-07 - acc: 1.0000 - val_loss: 16.1181 - val_acc: 0.0000e+00
Epoch 4/20
20/20 [==============================] - 0s 22ms/step - loss: 8.0590 - acc: 0.5000 - val_loss: 16.1181 - val_acc: 0.0000e+00
python keras
python keras
asked 5 hours ago
ZWangZWang
62
62
add a comment |
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "557"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f45274%2fkeras-multi-input-model-loss-plummets-doesnt-train%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Data Science Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f45274%2fkeras-multi-input-model-loss-plummets-doesnt-train%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown