Keras multi input model loss plummets, doesn't train












0












$begingroup$


While using keras's multi-input model, the model just doesn't train at all. The accuracy skyrockets to near 100% and the loss plummets, so I think there's something wrong with the data generation.



I'm using a multi-input keras model, with two images of the same object, just rotated. The plan is to run each image through it's own CNN, then concatenate the two flattened layers and classify the object.



I prepare the data using the method found (here)[https://github.com/keras-team/keras/issues/8130]. The images are in separate directories but with the same seeding, they get loaded correctly. The labels are also correct, I've checked by looking at the filenames and the directories that the ImageDataGenerator generates.



The model is simple enough, I don't think it's causing the problem



def multiInput_model():
#create model - custom

input_1 = Input(shape=(img_width,img_height,1))
input_2 = Input(shape=(img_width,img_height,1))

output_1 = Conv2D(32,(5,5), activation='relu')(input_1)
output_1 = BatchNormalization()(output_1)
output_1 = MaxPooling2D(pool_size=(2,2))(output_1)
output_1 = Dropout(0.4)(output_1)
output_1 = Flatten()(output_1)

output_2 = Conv2D(32,(5,5), activation='relu')(input_2)
output_2 = BatchNormalization()(output_2)
output_2 = MaxPooling2D(pool_size=(2,2))(output_2)
output_2 = Dropout(0.4)(output_2)
output_2 = Flatten()(output_2)

inputs = [input_1,input_2]
outputs = [output_1,output_2]
combine = concatenate(outputs)

output = Dense(32,activation='relu')(combine)
output = Dense(num_classes,activation='softmax')(output)


model = Model(inputs,[output])


model.compile(loss='categorical_crossentropy',
optimizer='RMSprop',metrics=['accuracy'])

return model


The image generators are as follows



def generate_generator_multiple(generator,dir1, dir2, batch_size, img_width,img_height,subset):
genX1 = generator.flow_from_directory(dir1,
color_mode='grayscale',
target_size=
(img_width,img_height),
batch_size=batch_size,
class_mode='categorical',
shuffle=False,
subset=subset,
seed=1)
#Same seed for consistency.

genX2 = generator.flow_from_directory(dir2,
color_mode='grayscale',
target_size=
(img_width,img_height),
batch_size=batch_size,
class_mode='categorical',
shuffle=False,
subset=subset,
seed=1)
while True:
X1i = genX1.next()
X2i = genX2.next()
yield [X1i[0],X2i[0]],X1i[1] #Yields both images and their mutual label



train_generator =
generate_generator_multiple(generator=train_datagen,
dir1=train_data_dirA,
dir2=train_data_dirB,
batch_size=batch_size,
img_width=img_width,
img_height=img_height,
subset='training')

validation_generator =
generate_generator_multiple(generator=train_datagen,
dir1=train_data_dirA,
dir2=train_data_dirB,
batch_size=batch_size,
img_width=img_width,
img_height=img_height,
subset='validation')


The output is always like this



20/20 [==============================] - 4s 183ms/step - loss: 0.1342 - acc: 0.9500 - val_loss: 1.1921e-07 - val_acc: 1.0000
Epoch 2/20
20/20 [==============================] - 0s 22ms/step - loss: 1.1921e-07 - acc: 1.0000 - val_loss: 8.0590 - val_acc: 0.5000
Epoch 3/20
20/20 [==============================] - 0s 22ms/step - loss: 1.1921e-07 - acc: 1.0000 - val_loss: 16.1181 - val_acc: 0.0000e+00
Epoch 4/20
20/20 [==============================] - 0s 22ms/step - loss: 8.0590 - acc: 0.5000 - val_loss: 16.1181 - val_acc: 0.0000e+00









share|improve this question









$endgroup$

















    0












    $begingroup$


    While using keras's multi-input model, the model just doesn't train at all. The accuracy skyrockets to near 100% and the loss plummets, so I think there's something wrong with the data generation.



    I'm using a multi-input keras model, with two images of the same object, just rotated. The plan is to run each image through it's own CNN, then concatenate the two flattened layers and classify the object.



    I prepare the data using the method found (here)[https://github.com/keras-team/keras/issues/8130]. The images are in separate directories but with the same seeding, they get loaded correctly. The labels are also correct, I've checked by looking at the filenames and the directories that the ImageDataGenerator generates.



    The model is simple enough, I don't think it's causing the problem



    def multiInput_model():
    #create model - custom

    input_1 = Input(shape=(img_width,img_height,1))
    input_2 = Input(shape=(img_width,img_height,1))

    output_1 = Conv2D(32,(5,5), activation='relu')(input_1)
    output_1 = BatchNormalization()(output_1)
    output_1 = MaxPooling2D(pool_size=(2,2))(output_1)
    output_1 = Dropout(0.4)(output_1)
    output_1 = Flatten()(output_1)

    output_2 = Conv2D(32,(5,5), activation='relu')(input_2)
    output_2 = BatchNormalization()(output_2)
    output_2 = MaxPooling2D(pool_size=(2,2))(output_2)
    output_2 = Dropout(0.4)(output_2)
    output_2 = Flatten()(output_2)

    inputs = [input_1,input_2]
    outputs = [output_1,output_2]
    combine = concatenate(outputs)

    output = Dense(32,activation='relu')(combine)
    output = Dense(num_classes,activation='softmax')(output)


    model = Model(inputs,[output])


    model.compile(loss='categorical_crossentropy',
    optimizer='RMSprop',metrics=['accuracy'])

    return model


    The image generators are as follows



    def generate_generator_multiple(generator,dir1, dir2, batch_size, img_width,img_height,subset):
    genX1 = generator.flow_from_directory(dir1,
    color_mode='grayscale',
    target_size=
    (img_width,img_height),
    batch_size=batch_size,
    class_mode='categorical',
    shuffle=False,
    subset=subset,
    seed=1)
    #Same seed for consistency.

    genX2 = generator.flow_from_directory(dir2,
    color_mode='grayscale',
    target_size=
    (img_width,img_height),
    batch_size=batch_size,
    class_mode='categorical',
    shuffle=False,
    subset=subset,
    seed=1)
    while True:
    X1i = genX1.next()
    X2i = genX2.next()
    yield [X1i[0],X2i[0]],X1i[1] #Yields both images and their mutual label



    train_generator =
    generate_generator_multiple(generator=train_datagen,
    dir1=train_data_dirA,
    dir2=train_data_dirB,
    batch_size=batch_size,
    img_width=img_width,
    img_height=img_height,
    subset='training')

    validation_generator =
    generate_generator_multiple(generator=train_datagen,
    dir1=train_data_dirA,
    dir2=train_data_dirB,
    batch_size=batch_size,
    img_width=img_width,
    img_height=img_height,
    subset='validation')


    The output is always like this



    20/20 [==============================] - 4s 183ms/step - loss: 0.1342 - acc: 0.9500 - val_loss: 1.1921e-07 - val_acc: 1.0000
    Epoch 2/20
    20/20 [==============================] - 0s 22ms/step - loss: 1.1921e-07 - acc: 1.0000 - val_loss: 8.0590 - val_acc: 0.5000
    Epoch 3/20
    20/20 [==============================] - 0s 22ms/step - loss: 1.1921e-07 - acc: 1.0000 - val_loss: 16.1181 - val_acc: 0.0000e+00
    Epoch 4/20
    20/20 [==============================] - 0s 22ms/step - loss: 8.0590 - acc: 0.5000 - val_loss: 16.1181 - val_acc: 0.0000e+00









    share|improve this question









    $endgroup$















      0












      0








      0





      $begingroup$


      While using keras's multi-input model, the model just doesn't train at all. The accuracy skyrockets to near 100% and the loss plummets, so I think there's something wrong with the data generation.



      I'm using a multi-input keras model, with two images of the same object, just rotated. The plan is to run each image through it's own CNN, then concatenate the two flattened layers and classify the object.



      I prepare the data using the method found (here)[https://github.com/keras-team/keras/issues/8130]. The images are in separate directories but with the same seeding, they get loaded correctly. The labels are also correct, I've checked by looking at the filenames and the directories that the ImageDataGenerator generates.



      The model is simple enough, I don't think it's causing the problem



      def multiInput_model():
      #create model - custom

      input_1 = Input(shape=(img_width,img_height,1))
      input_2 = Input(shape=(img_width,img_height,1))

      output_1 = Conv2D(32,(5,5), activation='relu')(input_1)
      output_1 = BatchNormalization()(output_1)
      output_1 = MaxPooling2D(pool_size=(2,2))(output_1)
      output_1 = Dropout(0.4)(output_1)
      output_1 = Flatten()(output_1)

      output_2 = Conv2D(32,(5,5), activation='relu')(input_2)
      output_2 = BatchNormalization()(output_2)
      output_2 = MaxPooling2D(pool_size=(2,2))(output_2)
      output_2 = Dropout(0.4)(output_2)
      output_2 = Flatten()(output_2)

      inputs = [input_1,input_2]
      outputs = [output_1,output_2]
      combine = concatenate(outputs)

      output = Dense(32,activation='relu')(combine)
      output = Dense(num_classes,activation='softmax')(output)


      model = Model(inputs,[output])


      model.compile(loss='categorical_crossentropy',
      optimizer='RMSprop',metrics=['accuracy'])

      return model


      The image generators are as follows



      def generate_generator_multiple(generator,dir1, dir2, batch_size, img_width,img_height,subset):
      genX1 = generator.flow_from_directory(dir1,
      color_mode='grayscale',
      target_size=
      (img_width,img_height),
      batch_size=batch_size,
      class_mode='categorical',
      shuffle=False,
      subset=subset,
      seed=1)
      #Same seed for consistency.

      genX2 = generator.flow_from_directory(dir2,
      color_mode='grayscale',
      target_size=
      (img_width,img_height),
      batch_size=batch_size,
      class_mode='categorical',
      shuffle=False,
      subset=subset,
      seed=1)
      while True:
      X1i = genX1.next()
      X2i = genX2.next()
      yield [X1i[0],X2i[0]],X1i[1] #Yields both images and their mutual label



      train_generator =
      generate_generator_multiple(generator=train_datagen,
      dir1=train_data_dirA,
      dir2=train_data_dirB,
      batch_size=batch_size,
      img_width=img_width,
      img_height=img_height,
      subset='training')

      validation_generator =
      generate_generator_multiple(generator=train_datagen,
      dir1=train_data_dirA,
      dir2=train_data_dirB,
      batch_size=batch_size,
      img_width=img_width,
      img_height=img_height,
      subset='validation')


      The output is always like this



      20/20 [==============================] - 4s 183ms/step - loss: 0.1342 - acc: 0.9500 - val_loss: 1.1921e-07 - val_acc: 1.0000
      Epoch 2/20
      20/20 [==============================] - 0s 22ms/step - loss: 1.1921e-07 - acc: 1.0000 - val_loss: 8.0590 - val_acc: 0.5000
      Epoch 3/20
      20/20 [==============================] - 0s 22ms/step - loss: 1.1921e-07 - acc: 1.0000 - val_loss: 16.1181 - val_acc: 0.0000e+00
      Epoch 4/20
      20/20 [==============================] - 0s 22ms/step - loss: 8.0590 - acc: 0.5000 - val_loss: 16.1181 - val_acc: 0.0000e+00









      share|improve this question









      $endgroup$




      While using keras's multi-input model, the model just doesn't train at all. The accuracy skyrockets to near 100% and the loss plummets, so I think there's something wrong with the data generation.



      I'm using a multi-input keras model, with two images of the same object, just rotated. The plan is to run each image through it's own CNN, then concatenate the two flattened layers and classify the object.



      I prepare the data using the method found (here)[https://github.com/keras-team/keras/issues/8130]. The images are in separate directories but with the same seeding, they get loaded correctly. The labels are also correct, I've checked by looking at the filenames and the directories that the ImageDataGenerator generates.



      The model is simple enough, I don't think it's causing the problem



      def multiInput_model():
      #create model - custom

      input_1 = Input(shape=(img_width,img_height,1))
      input_2 = Input(shape=(img_width,img_height,1))

      output_1 = Conv2D(32,(5,5), activation='relu')(input_1)
      output_1 = BatchNormalization()(output_1)
      output_1 = MaxPooling2D(pool_size=(2,2))(output_1)
      output_1 = Dropout(0.4)(output_1)
      output_1 = Flatten()(output_1)

      output_2 = Conv2D(32,(5,5), activation='relu')(input_2)
      output_2 = BatchNormalization()(output_2)
      output_2 = MaxPooling2D(pool_size=(2,2))(output_2)
      output_2 = Dropout(0.4)(output_2)
      output_2 = Flatten()(output_2)

      inputs = [input_1,input_2]
      outputs = [output_1,output_2]
      combine = concatenate(outputs)

      output = Dense(32,activation='relu')(combine)
      output = Dense(num_classes,activation='softmax')(output)


      model = Model(inputs,[output])


      model.compile(loss='categorical_crossentropy',
      optimizer='RMSprop',metrics=['accuracy'])

      return model


      The image generators are as follows



      def generate_generator_multiple(generator,dir1, dir2, batch_size, img_width,img_height,subset):
      genX1 = generator.flow_from_directory(dir1,
      color_mode='grayscale',
      target_size=
      (img_width,img_height),
      batch_size=batch_size,
      class_mode='categorical',
      shuffle=False,
      subset=subset,
      seed=1)
      #Same seed for consistency.

      genX2 = generator.flow_from_directory(dir2,
      color_mode='grayscale',
      target_size=
      (img_width,img_height),
      batch_size=batch_size,
      class_mode='categorical',
      shuffle=False,
      subset=subset,
      seed=1)
      while True:
      X1i = genX1.next()
      X2i = genX2.next()
      yield [X1i[0],X2i[0]],X1i[1] #Yields both images and their mutual label



      train_generator =
      generate_generator_multiple(generator=train_datagen,
      dir1=train_data_dirA,
      dir2=train_data_dirB,
      batch_size=batch_size,
      img_width=img_width,
      img_height=img_height,
      subset='training')

      validation_generator =
      generate_generator_multiple(generator=train_datagen,
      dir1=train_data_dirA,
      dir2=train_data_dirB,
      batch_size=batch_size,
      img_width=img_width,
      img_height=img_height,
      subset='validation')


      The output is always like this



      20/20 [==============================] - 4s 183ms/step - loss: 0.1342 - acc: 0.9500 - val_loss: 1.1921e-07 - val_acc: 1.0000
      Epoch 2/20
      20/20 [==============================] - 0s 22ms/step - loss: 1.1921e-07 - acc: 1.0000 - val_loss: 8.0590 - val_acc: 0.5000
      Epoch 3/20
      20/20 [==============================] - 0s 22ms/step - loss: 1.1921e-07 - acc: 1.0000 - val_loss: 16.1181 - val_acc: 0.0000e+00
      Epoch 4/20
      20/20 [==============================] - 0s 22ms/step - loss: 8.0590 - acc: 0.5000 - val_loss: 16.1181 - val_acc: 0.0000e+00






      python keras






      share|improve this question













      share|improve this question











      share|improve this question




      share|improve this question










      asked 5 hours ago









      ZWangZWang

      62




      62






















          0






          active

          oldest

          votes











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "557"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: false,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: null,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f45274%2fkeras-multi-input-model-loss-plummets-doesnt-train%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          0






          active

          oldest

          votes








          0






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes
















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Data Science Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f45274%2fkeras-multi-input-model-loss-plummets-doesnt-train%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          How to label and detect the document text images

          Tabula Rosettana

          Aureus (color)