All of the elements in predict_proba output matrix are less than 0.5












0












$begingroup$


I've created a MultinomialNB classifier model by which I'm trying to label some test texts:



from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn import preprocessing
from sklearn.naive_bayes import MultinomialNB

tfv = TfidfVectorizer(strip_accents='unicode', analyzer='word',token_pattern=r'w{1,}',
use_idf=1,smooth_idf=1,sublinear_tf=1)

# df['text'] is a long string text of words
tfv.fit(df['text'])

lbl_enc = preprocessing.LabelEncoder()

# df['which_subject'] is one of the following 7 subjects: ['Educational', 'Political', 'Sports', 'Tech', 'Social', 'Religions', 'Economics']
y = lbl_enc.fit_transform(df['which_subject'])

xtrain_tfv = tfv.transform(df['text'])

# xtest_tfv has 7 samples
xtest_tfv = tfv.transform(test_df['text'])

clf = MultinomialNB()
clf.fit(xtrain_tfv, y)

y_test_preds = clf.predict_proba(xtest_tfv)


Now y_test_preds is as follows:



enter image description here



0.255328    0.118111    0.129958    0.123368    0.119301    0.131098    0.122836
0.122814 0.265444 0.117637 0.13531 0.116697 0.122812 0.119286
0.131485 0.114459 0.258224 0.122414 0.118132 0.134005 0.12128
0.125075 0.131948 0.122668 0.258655 0.116518 0.119995 0.12514
0.124356 0.116987 0.121706 0.119796 0.266172 0.127231 0.123751
0.132295 0.1192 0.13366 0.119445 0.123186 0.257318 0.114895
0.126779 0.118406 0.123723 0.127393 0.122539 0.117509 0.263652


As you see, all of the elements are less than 0.5. Does this table show anything? Can I conclude that the classifier is not able to label test text?










share|improve this question











$endgroup$

















    0












    $begingroup$


    I've created a MultinomialNB classifier model by which I'm trying to label some test texts:



    from sklearn.feature_extraction.text import TfidfVectorizer
    from sklearn import preprocessing
    from sklearn.naive_bayes import MultinomialNB

    tfv = TfidfVectorizer(strip_accents='unicode', analyzer='word',token_pattern=r'w{1,}',
    use_idf=1,smooth_idf=1,sublinear_tf=1)

    # df['text'] is a long string text of words
    tfv.fit(df['text'])

    lbl_enc = preprocessing.LabelEncoder()

    # df['which_subject'] is one of the following 7 subjects: ['Educational', 'Political', 'Sports', 'Tech', 'Social', 'Religions', 'Economics']
    y = lbl_enc.fit_transform(df['which_subject'])

    xtrain_tfv = tfv.transform(df['text'])

    # xtest_tfv has 7 samples
    xtest_tfv = tfv.transform(test_df['text'])

    clf = MultinomialNB()
    clf.fit(xtrain_tfv, y)

    y_test_preds = clf.predict_proba(xtest_tfv)


    Now y_test_preds is as follows:



    enter image description here



    0.255328    0.118111    0.129958    0.123368    0.119301    0.131098    0.122836
    0.122814 0.265444 0.117637 0.13531 0.116697 0.122812 0.119286
    0.131485 0.114459 0.258224 0.122414 0.118132 0.134005 0.12128
    0.125075 0.131948 0.122668 0.258655 0.116518 0.119995 0.12514
    0.124356 0.116987 0.121706 0.119796 0.266172 0.127231 0.123751
    0.132295 0.1192 0.13366 0.119445 0.123186 0.257318 0.114895
    0.126779 0.118406 0.123723 0.127393 0.122539 0.117509 0.263652


    As you see, all of the elements are less than 0.5. Does this table show anything? Can I conclude that the classifier is not able to label test text?










    share|improve this question











    $endgroup$















      0












      0








      0





      $begingroup$


      I've created a MultinomialNB classifier model by which I'm trying to label some test texts:



      from sklearn.feature_extraction.text import TfidfVectorizer
      from sklearn import preprocessing
      from sklearn.naive_bayes import MultinomialNB

      tfv = TfidfVectorizer(strip_accents='unicode', analyzer='word',token_pattern=r'w{1,}',
      use_idf=1,smooth_idf=1,sublinear_tf=1)

      # df['text'] is a long string text of words
      tfv.fit(df['text'])

      lbl_enc = preprocessing.LabelEncoder()

      # df['which_subject'] is one of the following 7 subjects: ['Educational', 'Political', 'Sports', 'Tech', 'Social', 'Religions', 'Economics']
      y = lbl_enc.fit_transform(df['which_subject'])

      xtrain_tfv = tfv.transform(df['text'])

      # xtest_tfv has 7 samples
      xtest_tfv = tfv.transform(test_df['text'])

      clf = MultinomialNB()
      clf.fit(xtrain_tfv, y)

      y_test_preds = clf.predict_proba(xtest_tfv)


      Now y_test_preds is as follows:



      enter image description here



      0.255328    0.118111    0.129958    0.123368    0.119301    0.131098    0.122836
      0.122814 0.265444 0.117637 0.13531 0.116697 0.122812 0.119286
      0.131485 0.114459 0.258224 0.122414 0.118132 0.134005 0.12128
      0.125075 0.131948 0.122668 0.258655 0.116518 0.119995 0.12514
      0.124356 0.116987 0.121706 0.119796 0.266172 0.127231 0.123751
      0.132295 0.1192 0.13366 0.119445 0.123186 0.257318 0.114895
      0.126779 0.118406 0.123723 0.127393 0.122539 0.117509 0.263652


      As you see, all of the elements are less than 0.5. Does this table show anything? Can I conclude that the classifier is not able to label test text?










      share|improve this question











      $endgroup$




      I've created a MultinomialNB classifier model by which I'm trying to label some test texts:



      from sklearn.feature_extraction.text import TfidfVectorizer
      from sklearn import preprocessing
      from sklearn.naive_bayes import MultinomialNB

      tfv = TfidfVectorizer(strip_accents='unicode', analyzer='word',token_pattern=r'w{1,}',
      use_idf=1,smooth_idf=1,sublinear_tf=1)

      # df['text'] is a long string text of words
      tfv.fit(df['text'])

      lbl_enc = preprocessing.LabelEncoder()

      # df['which_subject'] is one of the following 7 subjects: ['Educational', 'Political', 'Sports', 'Tech', 'Social', 'Religions', 'Economics']
      y = lbl_enc.fit_transform(df['which_subject'])

      xtrain_tfv = tfv.transform(df['text'])

      # xtest_tfv has 7 samples
      xtest_tfv = tfv.transform(test_df['text'])

      clf = MultinomialNB()
      clf.fit(xtrain_tfv, y)

      y_test_preds = clf.predict_proba(xtest_tfv)


      Now y_test_preds is as follows:



      enter image description here



      0.255328    0.118111    0.129958    0.123368    0.119301    0.131098    0.122836
      0.122814 0.265444 0.117637 0.13531 0.116697 0.122812 0.119286
      0.131485 0.114459 0.258224 0.122414 0.118132 0.134005 0.12128
      0.125075 0.131948 0.122668 0.258655 0.116518 0.119995 0.12514
      0.124356 0.116987 0.121706 0.119796 0.266172 0.127231 0.123751
      0.132295 0.1192 0.13366 0.119445 0.123186 0.257318 0.114895
      0.126779 0.118406 0.123723 0.127393 0.122539 0.117509 0.263652


      As you see, all of the elements are less than 0.5. Does this table show anything? Can I conclude that the classifier is not able to label test text?







      machine-learning scikit-learn nlp text-mining multiclass-classification






      share|improve this question















      share|improve this question













      share|improve this question




      share|improve this question








      edited 1 hour ago







      hyTuev

















      asked 1 hour ago









      hyTuevhyTuev

      535




      535






















          0






          active

          oldest

          votes











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "557"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: false,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: null,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f44266%2fall-of-the-elements-in-predict-proba-output-matrix-are-less-than-0-5%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          0






          active

          oldest

          votes








          0






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes
















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Data Science Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f44266%2fall-of-the-elements-in-predict-proba-output-matrix-are-less-than-0-5%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          How to label and detect the document text images

          Tabula Rosettana

          Aureus (color)