Finding the basis of the intersection of a subspace and span












3












$begingroup$


I need help with determining the basis of $U_1 cap U_2$ in the following problem:



Let $V=mathbb{R}^4$. ${U_1} = left{ {left( {begin{array}{*{20}{c}}
{{x_1}} \
{{x_2}} \
{{x_3}} \
{{x_4}}
end{array}} right)left| {{x_1} - {x_2} + {x_3} - 3{x_4} = 0} right.} right}$
and $U_2=leftlangle {left( {begin{array}{*{20}{c}}
1 \
1 \
0 \
3
end{array}} right),left( {begin{array}{*{20}{c}}
0 \
{ - 1} \
0 \
1
end{array}} right)} rightrangle$
.



If $U_1$ is a subspace of $V$, determine a basis of $U_1 cap U_2$.



My attempt:



I know that ${U_2} = left{ {left( {begin{array}{*{20}{c}}
lambda \
{lambda - mu } \
0 \
{3lambda + mu }
end{array}} right)left| {lambda ,mu in mathbb{R}} right.} right}$
, and that the next step is that I should choose an element in $U_1$ and in $U_2$, e.g. Let $w in {U_1}$ and let $w in {U_2}$. Then we know that $w$ is of the form $w = left( {begin{array}{*{20}{c}}
lambda \
{lambda - mu } \
0 \
{3lambda + mu }
end{array}} right)$
, but I'm not sure what the procedure is from there.










share|cite|improve this question











$endgroup$












  • $begingroup$
    I think the easiest way to solve this without being clever is to rewrite $U_2$ as the solution set to an appropriate system of equations. Having found that system of equations you are merely looking for points where both the equations for $U_1$ and $U_2$ hold true. That is a known calculation, then you can find the basis for that. Moreover, this method generalizes to other similar problems. In short, span bad, equation good (for intersections).
    $endgroup$
    – James S. Cook
    4 hours ago
















3












$begingroup$


I need help with determining the basis of $U_1 cap U_2$ in the following problem:



Let $V=mathbb{R}^4$. ${U_1} = left{ {left( {begin{array}{*{20}{c}}
{{x_1}} \
{{x_2}} \
{{x_3}} \
{{x_4}}
end{array}} right)left| {{x_1} - {x_2} + {x_3} - 3{x_4} = 0} right.} right}$
and $U_2=leftlangle {left( {begin{array}{*{20}{c}}
1 \
1 \
0 \
3
end{array}} right),left( {begin{array}{*{20}{c}}
0 \
{ - 1} \
0 \
1
end{array}} right)} rightrangle$
.



If $U_1$ is a subspace of $V$, determine a basis of $U_1 cap U_2$.



My attempt:



I know that ${U_2} = left{ {left( {begin{array}{*{20}{c}}
lambda \
{lambda - mu } \
0 \
{3lambda + mu }
end{array}} right)left| {lambda ,mu in mathbb{R}} right.} right}$
, and that the next step is that I should choose an element in $U_1$ and in $U_2$, e.g. Let $w in {U_1}$ and let $w in {U_2}$. Then we know that $w$ is of the form $w = left( {begin{array}{*{20}{c}}
lambda \
{lambda - mu } \
0 \
{3lambda + mu }
end{array}} right)$
, but I'm not sure what the procedure is from there.










share|cite|improve this question











$endgroup$












  • $begingroup$
    I think the easiest way to solve this without being clever is to rewrite $U_2$ as the solution set to an appropriate system of equations. Having found that system of equations you are merely looking for points where both the equations for $U_1$ and $U_2$ hold true. That is a known calculation, then you can find the basis for that. Moreover, this method generalizes to other similar problems. In short, span bad, equation good (for intersections).
    $endgroup$
    – James S. Cook
    4 hours ago














3












3








3





$begingroup$


I need help with determining the basis of $U_1 cap U_2$ in the following problem:



Let $V=mathbb{R}^4$. ${U_1} = left{ {left( {begin{array}{*{20}{c}}
{{x_1}} \
{{x_2}} \
{{x_3}} \
{{x_4}}
end{array}} right)left| {{x_1} - {x_2} + {x_3} - 3{x_4} = 0} right.} right}$
and $U_2=leftlangle {left( {begin{array}{*{20}{c}}
1 \
1 \
0 \
3
end{array}} right),left( {begin{array}{*{20}{c}}
0 \
{ - 1} \
0 \
1
end{array}} right)} rightrangle$
.



If $U_1$ is a subspace of $V$, determine a basis of $U_1 cap U_2$.



My attempt:



I know that ${U_2} = left{ {left( {begin{array}{*{20}{c}}
lambda \
{lambda - mu } \
0 \
{3lambda + mu }
end{array}} right)left| {lambda ,mu in mathbb{R}} right.} right}$
, and that the next step is that I should choose an element in $U_1$ and in $U_2$, e.g. Let $w in {U_1}$ and let $w in {U_2}$. Then we know that $w$ is of the form $w = left( {begin{array}{*{20}{c}}
lambda \
{lambda - mu } \
0 \
{3lambda + mu }
end{array}} right)$
, but I'm not sure what the procedure is from there.










share|cite|improve this question











$endgroup$




I need help with determining the basis of $U_1 cap U_2$ in the following problem:



Let $V=mathbb{R}^4$. ${U_1} = left{ {left( {begin{array}{*{20}{c}}
{{x_1}} \
{{x_2}} \
{{x_3}} \
{{x_4}}
end{array}} right)left| {{x_1} - {x_2} + {x_3} - 3{x_4} = 0} right.} right}$
and $U_2=leftlangle {left( {begin{array}{*{20}{c}}
1 \
1 \
0 \
3
end{array}} right),left( {begin{array}{*{20}{c}}
0 \
{ - 1} \
0 \
1
end{array}} right)} rightrangle$
.



If $U_1$ is a subspace of $V$, determine a basis of $U_1 cap U_2$.



My attempt:



I know that ${U_2} = left{ {left( {begin{array}{*{20}{c}}
lambda \
{lambda - mu } \
0 \
{3lambda + mu }
end{array}} right)left| {lambda ,mu in mathbb{R}} right.} right}$
, and that the next step is that I should choose an element in $U_1$ and in $U_2$, e.g. Let $w in {U_1}$ and let $w in {U_2}$. Then we know that $w$ is of the form $w = left( {begin{array}{*{20}{c}}
lambda \
{lambda - mu } \
0 \
{3lambda + mu }
end{array}} right)$
, but I'm not sure what the procedure is from there.







linear-algebra






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited 4 hours ago







bb411

















asked 5 hours ago









bb411bb411

15119




15119












  • $begingroup$
    I think the easiest way to solve this without being clever is to rewrite $U_2$ as the solution set to an appropriate system of equations. Having found that system of equations you are merely looking for points where both the equations for $U_1$ and $U_2$ hold true. That is a known calculation, then you can find the basis for that. Moreover, this method generalizes to other similar problems. In short, span bad, equation good (for intersections).
    $endgroup$
    – James S. Cook
    4 hours ago


















  • $begingroup$
    I think the easiest way to solve this without being clever is to rewrite $U_2$ as the solution set to an appropriate system of equations. Having found that system of equations you are merely looking for points where both the equations for $U_1$ and $U_2$ hold true. That is a known calculation, then you can find the basis for that. Moreover, this method generalizes to other similar problems. In short, span bad, equation good (for intersections).
    $endgroup$
    – James S. Cook
    4 hours ago
















$begingroup$
I think the easiest way to solve this without being clever is to rewrite $U_2$ as the solution set to an appropriate system of equations. Having found that system of equations you are merely looking for points where both the equations for $U_1$ and $U_2$ hold true. That is a known calculation, then you can find the basis for that. Moreover, this method generalizes to other similar problems. In short, span bad, equation good (for intersections).
$endgroup$
– James S. Cook
4 hours ago




$begingroup$
I think the easiest way to solve this without being clever is to rewrite $U_2$ as the solution set to an appropriate system of equations. Having found that system of equations you are merely looking for points where both the equations for $U_1$ and $U_2$ hold true. That is a known calculation, then you can find the basis for that. Moreover, this method generalizes to other similar problems. In short, span bad, equation good (for intersections).
$endgroup$
– James S. Cook
4 hours ago










3 Answers
3






active

oldest

votes


















4












$begingroup$

The next step is to note thatbegin{align}U_1cap U_2&=left{begin{pmatrix}lambda\lambda-mu\0\3lambda+muend{pmatrix},middle|,lambda-(lambda-mu)-3(3lambda+mu)=0right}\&=left{begin{pmatrix}lambda\lambda-mu\0\3lambda+muend{pmatrix},middle|,9lambda+2mu=0right}\&=left{begin{pmatrix}lambda\frac{11}2lambda\0\-frac32lambdaend{pmatrix},middle|,lambdainmathbb{R}right}.end{align}Can you take it from here?






share|cite|improve this answer









$endgroup$













  • $begingroup$
    How should I proceed with finding a basis of ${U_1} cap {U_2} = leftlangle {left( {begin{array}{*{20}{c}} 1 \ {{raise0.5exhbox{$scriptstyle {11}$} kern-0.1em/kern-0.15em lower0.25exhbox{$scriptstyle 2$}}} \ 0 \ {{raise0.5exhbox{$scriptstyle { - 3}$} kern-0.1em/kern-0.15em lower0.25exhbox{$scriptstyle 2$}}} end{array}} right)} rightrangle $?
    $endgroup$
    – bb411
    3 hours ago








  • 1




    $begingroup$
    What about taking$$left{begin{pmatrix}1\frac{11}2\0\-frac32end{pmatrix}right}?$$
    $endgroup$
    – José Carlos Santos
    3 hours ago





















2












$begingroup$

$U_1$ is the set of vector such that $begin{bmatrix} 1 &-1 &1 &-3end{bmatrix}begin{bmatrix} x_1 \x_2 \x_3 \x_4end{bmatrix} = 0$



$begin{bmatrix} 1 &-1 &1 &-3end{bmatrix}begin{bmatrix} 1 \1 \0 \3end{bmatrix} = -9\
begin{bmatrix} 1 &-1 &1 &-3end{bmatrix}begin{bmatrix} 0 \-1 \0 \1end{bmatrix} = -2$



$2begin{bmatrix} 1 \1 \0 \3end{bmatrix} - 9begin{bmatrix} 0 \-1 \0 \1end{bmatrix} = begin{bmatrix} 2 \11 \0 \-3end{bmatrix}$






share|cite|improve this answer









$endgroup$





















    0












    $begingroup$

    If $(1,1,0,3)$ and $(0,-1,0,1)$ span $U_2$ then if $(x_1,x_2,x_3,x_4) in U_2$ there exist $a,b$ such that:
    $$ a(1,1,0,3)+b(0,-1,0,1)=(x_1,x_2,x_3,x_4)$$
    We face,
    $$ a=x_1, a-b = x_2, x_3=0, 3a+b=x_4 $$
    Ok, so,
    $$ b = x_1-x_2 qquad & qquad b = x_4-3x_1 Rightarrow x_1-x_2 = x_4-3x_1$$
    Ok, in summary, $(x_1,x_2,x_3,x_4) in U_2$ if we have
    $$ 4x_1-x_2-x_4 = 0 & x_3=0. $$
    If $(x_1,x_2,x_3,x_4) in U_1$ then we know $x_1-x_2+x_3-3x_4 = 0$. Consequently, to find $(x_1,x_2,x_3,x_4) in U_1 cap U_2$ we need to solve equations for both subspaces simultaneously:
    $$ left[ begin{array}{cccc|c} 1 & -1 & 1 & -3 & 0 \ 4 & -1 & 0 & -1 & 0 \ 0 & 0 & 1 & 0 & 0 end{array}right] sim
    left[ begin{array}{cccc|c} 1 & -1 & 0 & -9/3 & 0 \ 0 & 1 & 0 & 11/3 & 0 \ 0 & 0 & 1 & 0 & 0 end{array}right] sim left[ begin{array}{cccc|c} 1 & 0 & 0 & 2/3 & 0 \ 0 & 1 & 0 & 11/3 & 0 \ 0 & 0 & 1 & 0 & 0 end{array}right] $$

    Thus $x_1 = -2x_4/3$ and $x_2 = -11x_4/3$ and $x_3=0$ with $x_4$ free. In short,
    $$ U_1 cap U_2 = text{span}(-2,-11,0,3). $$






    share|cite|improve this answer









    $endgroup$













      Your Answer





      StackExchange.ifUsing("editor", function () {
      return StackExchange.using("mathjaxEditing", function () {
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      });
      });
      }, "mathjax-editing");

      StackExchange.ready(function() {
      var channelOptions = {
      tags: "".split(" "),
      id: "69"
      };
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function() {
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled) {
      StackExchange.using("snippets", function() {
      createEditor();
      });
      }
      else {
      createEditor();
      }
      });

      function createEditor() {
      StackExchange.prepareEditor({
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader: {
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      },
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      });


      }
      });














      draft saved

      draft discarded


















      StackExchange.ready(
      function () {
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3130546%2ffinding-the-basis-of-the-intersection-of-a-subspace-and-span%23new-answer', 'question_page');
      }
      );

      Post as a guest















      Required, but never shown

























      3 Answers
      3






      active

      oldest

      votes








      3 Answers
      3






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      4












      $begingroup$

      The next step is to note thatbegin{align}U_1cap U_2&=left{begin{pmatrix}lambda\lambda-mu\0\3lambda+muend{pmatrix},middle|,lambda-(lambda-mu)-3(3lambda+mu)=0right}\&=left{begin{pmatrix}lambda\lambda-mu\0\3lambda+muend{pmatrix},middle|,9lambda+2mu=0right}\&=left{begin{pmatrix}lambda\frac{11}2lambda\0\-frac32lambdaend{pmatrix},middle|,lambdainmathbb{R}right}.end{align}Can you take it from here?






      share|cite|improve this answer









      $endgroup$













      • $begingroup$
        How should I proceed with finding a basis of ${U_1} cap {U_2} = leftlangle {left( {begin{array}{*{20}{c}} 1 \ {{raise0.5exhbox{$scriptstyle {11}$} kern-0.1em/kern-0.15em lower0.25exhbox{$scriptstyle 2$}}} \ 0 \ {{raise0.5exhbox{$scriptstyle { - 3}$} kern-0.1em/kern-0.15em lower0.25exhbox{$scriptstyle 2$}}} end{array}} right)} rightrangle $?
        $endgroup$
        – bb411
        3 hours ago








      • 1




        $begingroup$
        What about taking$$left{begin{pmatrix}1\frac{11}2\0\-frac32end{pmatrix}right}?$$
        $endgroup$
        – José Carlos Santos
        3 hours ago


















      4












      $begingroup$

      The next step is to note thatbegin{align}U_1cap U_2&=left{begin{pmatrix}lambda\lambda-mu\0\3lambda+muend{pmatrix},middle|,lambda-(lambda-mu)-3(3lambda+mu)=0right}\&=left{begin{pmatrix}lambda\lambda-mu\0\3lambda+muend{pmatrix},middle|,9lambda+2mu=0right}\&=left{begin{pmatrix}lambda\frac{11}2lambda\0\-frac32lambdaend{pmatrix},middle|,lambdainmathbb{R}right}.end{align}Can you take it from here?






      share|cite|improve this answer









      $endgroup$













      • $begingroup$
        How should I proceed with finding a basis of ${U_1} cap {U_2} = leftlangle {left( {begin{array}{*{20}{c}} 1 \ {{raise0.5exhbox{$scriptstyle {11}$} kern-0.1em/kern-0.15em lower0.25exhbox{$scriptstyle 2$}}} \ 0 \ {{raise0.5exhbox{$scriptstyle { - 3}$} kern-0.1em/kern-0.15em lower0.25exhbox{$scriptstyle 2$}}} end{array}} right)} rightrangle $?
        $endgroup$
        – bb411
        3 hours ago








      • 1




        $begingroup$
        What about taking$$left{begin{pmatrix}1\frac{11}2\0\-frac32end{pmatrix}right}?$$
        $endgroup$
        – José Carlos Santos
        3 hours ago
















      4












      4








      4





      $begingroup$

      The next step is to note thatbegin{align}U_1cap U_2&=left{begin{pmatrix}lambda\lambda-mu\0\3lambda+muend{pmatrix},middle|,lambda-(lambda-mu)-3(3lambda+mu)=0right}\&=left{begin{pmatrix}lambda\lambda-mu\0\3lambda+muend{pmatrix},middle|,9lambda+2mu=0right}\&=left{begin{pmatrix}lambda\frac{11}2lambda\0\-frac32lambdaend{pmatrix},middle|,lambdainmathbb{R}right}.end{align}Can you take it from here?






      share|cite|improve this answer









      $endgroup$



      The next step is to note thatbegin{align}U_1cap U_2&=left{begin{pmatrix}lambda\lambda-mu\0\3lambda+muend{pmatrix},middle|,lambda-(lambda-mu)-3(3lambda+mu)=0right}\&=left{begin{pmatrix}lambda\lambda-mu\0\3lambda+muend{pmatrix},middle|,9lambda+2mu=0right}\&=left{begin{pmatrix}lambda\frac{11}2lambda\0\-frac32lambdaend{pmatrix},middle|,lambdainmathbb{R}right}.end{align}Can you take it from here?







      share|cite|improve this answer












      share|cite|improve this answer



      share|cite|improve this answer










      answered 4 hours ago









      José Carlos SantosJosé Carlos Santos

      164k22131234




      164k22131234












      • $begingroup$
        How should I proceed with finding a basis of ${U_1} cap {U_2} = leftlangle {left( {begin{array}{*{20}{c}} 1 \ {{raise0.5exhbox{$scriptstyle {11}$} kern-0.1em/kern-0.15em lower0.25exhbox{$scriptstyle 2$}}} \ 0 \ {{raise0.5exhbox{$scriptstyle { - 3}$} kern-0.1em/kern-0.15em lower0.25exhbox{$scriptstyle 2$}}} end{array}} right)} rightrangle $?
        $endgroup$
        – bb411
        3 hours ago








      • 1




        $begingroup$
        What about taking$$left{begin{pmatrix}1\frac{11}2\0\-frac32end{pmatrix}right}?$$
        $endgroup$
        – José Carlos Santos
        3 hours ago




















      • $begingroup$
        How should I proceed with finding a basis of ${U_1} cap {U_2} = leftlangle {left( {begin{array}{*{20}{c}} 1 \ {{raise0.5exhbox{$scriptstyle {11}$} kern-0.1em/kern-0.15em lower0.25exhbox{$scriptstyle 2$}}} \ 0 \ {{raise0.5exhbox{$scriptstyle { - 3}$} kern-0.1em/kern-0.15em lower0.25exhbox{$scriptstyle 2$}}} end{array}} right)} rightrangle $?
        $endgroup$
        – bb411
        3 hours ago








      • 1




        $begingroup$
        What about taking$$left{begin{pmatrix}1\frac{11}2\0\-frac32end{pmatrix}right}?$$
        $endgroup$
        – José Carlos Santos
        3 hours ago


















      $begingroup$
      How should I proceed with finding a basis of ${U_1} cap {U_2} = leftlangle {left( {begin{array}{*{20}{c}} 1 \ {{raise0.5exhbox{$scriptstyle {11}$} kern-0.1em/kern-0.15em lower0.25exhbox{$scriptstyle 2$}}} \ 0 \ {{raise0.5exhbox{$scriptstyle { - 3}$} kern-0.1em/kern-0.15em lower0.25exhbox{$scriptstyle 2$}}} end{array}} right)} rightrangle $?
      $endgroup$
      – bb411
      3 hours ago






      $begingroup$
      How should I proceed with finding a basis of ${U_1} cap {U_2} = leftlangle {left( {begin{array}{*{20}{c}} 1 \ {{raise0.5exhbox{$scriptstyle {11}$} kern-0.1em/kern-0.15em lower0.25exhbox{$scriptstyle 2$}}} \ 0 \ {{raise0.5exhbox{$scriptstyle { - 3}$} kern-0.1em/kern-0.15em lower0.25exhbox{$scriptstyle 2$}}} end{array}} right)} rightrangle $?
      $endgroup$
      – bb411
      3 hours ago






      1




      1




      $begingroup$
      What about taking$$left{begin{pmatrix}1\frac{11}2\0\-frac32end{pmatrix}right}?$$
      $endgroup$
      – José Carlos Santos
      3 hours ago






      $begingroup$
      What about taking$$left{begin{pmatrix}1\frac{11}2\0\-frac32end{pmatrix}right}?$$
      $endgroup$
      – José Carlos Santos
      3 hours ago













      2












      $begingroup$

      $U_1$ is the set of vector such that $begin{bmatrix} 1 &-1 &1 &-3end{bmatrix}begin{bmatrix} x_1 \x_2 \x_3 \x_4end{bmatrix} = 0$



      $begin{bmatrix} 1 &-1 &1 &-3end{bmatrix}begin{bmatrix} 1 \1 \0 \3end{bmatrix} = -9\
      begin{bmatrix} 1 &-1 &1 &-3end{bmatrix}begin{bmatrix} 0 \-1 \0 \1end{bmatrix} = -2$



      $2begin{bmatrix} 1 \1 \0 \3end{bmatrix} - 9begin{bmatrix} 0 \-1 \0 \1end{bmatrix} = begin{bmatrix} 2 \11 \0 \-3end{bmatrix}$






      share|cite|improve this answer









      $endgroup$


















        2












        $begingroup$

        $U_1$ is the set of vector such that $begin{bmatrix} 1 &-1 &1 &-3end{bmatrix}begin{bmatrix} x_1 \x_2 \x_3 \x_4end{bmatrix} = 0$



        $begin{bmatrix} 1 &-1 &1 &-3end{bmatrix}begin{bmatrix} 1 \1 \0 \3end{bmatrix} = -9\
        begin{bmatrix} 1 &-1 &1 &-3end{bmatrix}begin{bmatrix} 0 \-1 \0 \1end{bmatrix} = -2$



        $2begin{bmatrix} 1 \1 \0 \3end{bmatrix} - 9begin{bmatrix} 0 \-1 \0 \1end{bmatrix} = begin{bmatrix} 2 \11 \0 \-3end{bmatrix}$






        share|cite|improve this answer









        $endgroup$
















          2












          2








          2





          $begingroup$

          $U_1$ is the set of vector such that $begin{bmatrix} 1 &-1 &1 &-3end{bmatrix}begin{bmatrix} x_1 \x_2 \x_3 \x_4end{bmatrix} = 0$



          $begin{bmatrix} 1 &-1 &1 &-3end{bmatrix}begin{bmatrix} 1 \1 \0 \3end{bmatrix} = -9\
          begin{bmatrix} 1 &-1 &1 &-3end{bmatrix}begin{bmatrix} 0 \-1 \0 \1end{bmatrix} = -2$



          $2begin{bmatrix} 1 \1 \0 \3end{bmatrix} - 9begin{bmatrix} 0 \-1 \0 \1end{bmatrix} = begin{bmatrix} 2 \11 \0 \-3end{bmatrix}$






          share|cite|improve this answer









          $endgroup$



          $U_1$ is the set of vector such that $begin{bmatrix} 1 &-1 &1 &-3end{bmatrix}begin{bmatrix} x_1 \x_2 \x_3 \x_4end{bmatrix} = 0$



          $begin{bmatrix} 1 &-1 &1 &-3end{bmatrix}begin{bmatrix} 1 \1 \0 \3end{bmatrix} = -9\
          begin{bmatrix} 1 &-1 &1 &-3end{bmatrix}begin{bmatrix} 0 \-1 \0 \1end{bmatrix} = -2$



          $2begin{bmatrix} 1 \1 \0 \3end{bmatrix} - 9begin{bmatrix} 0 \-1 \0 \1end{bmatrix} = begin{bmatrix} 2 \11 \0 \-3end{bmatrix}$







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered 4 hours ago









          Doug MDoug M

          45.3k31954




          45.3k31954























              0












              $begingroup$

              If $(1,1,0,3)$ and $(0,-1,0,1)$ span $U_2$ then if $(x_1,x_2,x_3,x_4) in U_2$ there exist $a,b$ such that:
              $$ a(1,1,0,3)+b(0,-1,0,1)=(x_1,x_2,x_3,x_4)$$
              We face,
              $$ a=x_1, a-b = x_2, x_3=0, 3a+b=x_4 $$
              Ok, so,
              $$ b = x_1-x_2 qquad & qquad b = x_4-3x_1 Rightarrow x_1-x_2 = x_4-3x_1$$
              Ok, in summary, $(x_1,x_2,x_3,x_4) in U_2$ if we have
              $$ 4x_1-x_2-x_4 = 0 & x_3=0. $$
              If $(x_1,x_2,x_3,x_4) in U_1$ then we know $x_1-x_2+x_3-3x_4 = 0$. Consequently, to find $(x_1,x_2,x_3,x_4) in U_1 cap U_2$ we need to solve equations for both subspaces simultaneously:
              $$ left[ begin{array}{cccc|c} 1 & -1 & 1 & -3 & 0 \ 4 & -1 & 0 & -1 & 0 \ 0 & 0 & 1 & 0 & 0 end{array}right] sim
              left[ begin{array}{cccc|c} 1 & -1 & 0 & -9/3 & 0 \ 0 & 1 & 0 & 11/3 & 0 \ 0 & 0 & 1 & 0 & 0 end{array}right] sim left[ begin{array}{cccc|c} 1 & 0 & 0 & 2/3 & 0 \ 0 & 1 & 0 & 11/3 & 0 \ 0 & 0 & 1 & 0 & 0 end{array}right] $$

              Thus $x_1 = -2x_4/3$ and $x_2 = -11x_4/3$ and $x_3=0$ with $x_4$ free. In short,
              $$ U_1 cap U_2 = text{span}(-2,-11,0,3). $$






              share|cite|improve this answer









              $endgroup$


















                0












                $begingroup$

                If $(1,1,0,3)$ and $(0,-1,0,1)$ span $U_2$ then if $(x_1,x_2,x_3,x_4) in U_2$ there exist $a,b$ such that:
                $$ a(1,1,0,3)+b(0,-1,0,1)=(x_1,x_2,x_3,x_4)$$
                We face,
                $$ a=x_1, a-b = x_2, x_3=0, 3a+b=x_4 $$
                Ok, so,
                $$ b = x_1-x_2 qquad & qquad b = x_4-3x_1 Rightarrow x_1-x_2 = x_4-3x_1$$
                Ok, in summary, $(x_1,x_2,x_3,x_4) in U_2$ if we have
                $$ 4x_1-x_2-x_4 = 0 & x_3=0. $$
                If $(x_1,x_2,x_3,x_4) in U_1$ then we know $x_1-x_2+x_3-3x_4 = 0$. Consequently, to find $(x_1,x_2,x_3,x_4) in U_1 cap U_2$ we need to solve equations for both subspaces simultaneously:
                $$ left[ begin{array}{cccc|c} 1 & -1 & 1 & -3 & 0 \ 4 & -1 & 0 & -1 & 0 \ 0 & 0 & 1 & 0 & 0 end{array}right] sim
                left[ begin{array}{cccc|c} 1 & -1 & 0 & -9/3 & 0 \ 0 & 1 & 0 & 11/3 & 0 \ 0 & 0 & 1 & 0 & 0 end{array}right] sim left[ begin{array}{cccc|c} 1 & 0 & 0 & 2/3 & 0 \ 0 & 1 & 0 & 11/3 & 0 \ 0 & 0 & 1 & 0 & 0 end{array}right] $$

                Thus $x_1 = -2x_4/3$ and $x_2 = -11x_4/3$ and $x_3=0$ with $x_4$ free. In short,
                $$ U_1 cap U_2 = text{span}(-2,-11,0,3). $$






                share|cite|improve this answer









                $endgroup$
















                  0












                  0








                  0





                  $begingroup$

                  If $(1,1,0,3)$ and $(0,-1,0,1)$ span $U_2$ then if $(x_1,x_2,x_3,x_4) in U_2$ there exist $a,b$ such that:
                  $$ a(1,1,0,3)+b(0,-1,0,1)=(x_1,x_2,x_3,x_4)$$
                  We face,
                  $$ a=x_1, a-b = x_2, x_3=0, 3a+b=x_4 $$
                  Ok, so,
                  $$ b = x_1-x_2 qquad & qquad b = x_4-3x_1 Rightarrow x_1-x_2 = x_4-3x_1$$
                  Ok, in summary, $(x_1,x_2,x_3,x_4) in U_2$ if we have
                  $$ 4x_1-x_2-x_4 = 0 & x_3=0. $$
                  If $(x_1,x_2,x_3,x_4) in U_1$ then we know $x_1-x_2+x_3-3x_4 = 0$. Consequently, to find $(x_1,x_2,x_3,x_4) in U_1 cap U_2$ we need to solve equations for both subspaces simultaneously:
                  $$ left[ begin{array}{cccc|c} 1 & -1 & 1 & -3 & 0 \ 4 & -1 & 0 & -1 & 0 \ 0 & 0 & 1 & 0 & 0 end{array}right] sim
                  left[ begin{array}{cccc|c} 1 & -1 & 0 & -9/3 & 0 \ 0 & 1 & 0 & 11/3 & 0 \ 0 & 0 & 1 & 0 & 0 end{array}right] sim left[ begin{array}{cccc|c} 1 & 0 & 0 & 2/3 & 0 \ 0 & 1 & 0 & 11/3 & 0 \ 0 & 0 & 1 & 0 & 0 end{array}right] $$

                  Thus $x_1 = -2x_4/3$ and $x_2 = -11x_4/3$ and $x_3=0$ with $x_4$ free. In short,
                  $$ U_1 cap U_2 = text{span}(-2,-11,0,3). $$






                  share|cite|improve this answer









                  $endgroup$



                  If $(1,1,0,3)$ and $(0,-1,0,1)$ span $U_2$ then if $(x_1,x_2,x_3,x_4) in U_2$ there exist $a,b$ such that:
                  $$ a(1,1,0,3)+b(0,-1,0,1)=(x_1,x_2,x_3,x_4)$$
                  We face,
                  $$ a=x_1, a-b = x_2, x_3=0, 3a+b=x_4 $$
                  Ok, so,
                  $$ b = x_1-x_2 qquad & qquad b = x_4-3x_1 Rightarrow x_1-x_2 = x_4-3x_1$$
                  Ok, in summary, $(x_1,x_2,x_3,x_4) in U_2$ if we have
                  $$ 4x_1-x_2-x_4 = 0 & x_3=0. $$
                  If $(x_1,x_2,x_3,x_4) in U_1$ then we know $x_1-x_2+x_3-3x_4 = 0$. Consequently, to find $(x_1,x_2,x_3,x_4) in U_1 cap U_2$ we need to solve equations for both subspaces simultaneously:
                  $$ left[ begin{array}{cccc|c} 1 & -1 & 1 & -3 & 0 \ 4 & -1 & 0 & -1 & 0 \ 0 & 0 & 1 & 0 & 0 end{array}right] sim
                  left[ begin{array}{cccc|c} 1 & -1 & 0 & -9/3 & 0 \ 0 & 1 & 0 & 11/3 & 0 \ 0 & 0 & 1 & 0 & 0 end{array}right] sim left[ begin{array}{cccc|c} 1 & 0 & 0 & 2/3 & 0 \ 0 & 1 & 0 & 11/3 & 0 \ 0 & 0 & 1 & 0 & 0 end{array}right] $$

                  Thus $x_1 = -2x_4/3$ and $x_2 = -11x_4/3$ and $x_3=0$ with $x_4$ free. In short,
                  $$ U_1 cap U_2 = text{span}(-2,-11,0,3). $$







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered 3 hours ago









                  James S. CookJames S. Cook

                  13.2k22872




                  13.2k22872






























                      draft saved

                      draft discarded




















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid



                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.


                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function () {
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3130546%2ffinding-the-basis-of-the-intersection-of-a-subspace-and-span%23new-answer', 'question_page');
                      }
                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      How to label and detect the document text images

                      Tabula Rosettana

                      Aureus (color)