Principatus Romanus

Multi tool use
Principatus Romanus (27 a.C.n.–284) est notio hodierna quae tempus Imperii Romani ab Augusto imperatore usque ad Discrimen Tertii Saeculi significat; tempus sequens Antiquitas Posterior vocatur. Imperatores illius temporis ut Res Publica Romana formaliter continuaretur operam dederunt. Re vera potius forma monarchiae illuminatae fuit.
Nexus interni
- Imperium Romanum
- Index Imperatorum Romanorum
- Periodizatio
Bibliographia |
- Jochen Bleicken: Augustus. Berolini 1998.
- Jochen Bleicken: Verfassungs- und Sozialgeschichte des Römischen Kaiserreichs. Paderbronnae 1978.
- Jochen Bleicken: Prinzipat und Dominat. Gedanken zur Periodisierung der römischen Kaiserzeit. Aquis Mattiacis 1978.
- Klaus Bringmann / Thomas Schäfer: Augustus und die Begründung des römischen Kaisertums. Berolini 2001.
- Karl Christ: Geschichte der Römischen Kaiserzeit. Von Augustus bis zu Konstantin. 6. ed., Monaci 2009, ISBN 978-3-406-59613-1.
- Egon Flaig: Den Kaiser herausfordern. Fracofurti 1992.
- Dietmar Kienast: Augustus. Prinzeps und Monarch. 4. ed., Darmstadiae 2009.
- Kurt A. Raaflaub, Mark Toher (ed.): Between Republic and Empire: Interpretations of Augustus and his Principate. Berkeley-Angelopoli-Oxoniae 1990.
- Walter Schmitthenner (ed.): Augustus (Wege der Forschung, Vol. 128). Darmstadiae 1969.
- Ronald Syme: The Roman revolution . Oxoniae 1939.
.mw-parser-output .stipula{padding:3px;background:#F7F8FF;border:1px solid grey;margin:auto}.mw-parser-output .stipula td.cell1{background:transparent;color:white}

|
Haec stipula ad historiam spectat. Amplifica, si potes!
|
vNt,EWYwFYNZQlui SWuwQMTG
Popular posts from this blog
Tabula multilinguis Rosettana in Museo Britannico ostenditur. Tabula Rosettana, [1] etiam titulo OGIS 90 agnita, est stela decreto de rebus sacris in Aegypto anno 196 a.C.n. lato inscripta. Tabula iuxta Rosettam Aegypti, urbem in delta Nili et ad oram maris Mediterranei iacentem, anno 1799 a milite Francico reperta est. Inventio stelae, linguis duabus scripturisque tribus inscriptae, eruditis Instituti Aegypti statim nuntiata est; ibi enim iussu imperatoris Napoleonis eruditi omnium scientiarum (sub aegide Commissionis Scientiarum et Artium) properaverant cum expeditione Francica. Qua a Britannis mox debellata, tabula Rosettana Londinium missa hodie apud Museum Britannicum iacet. Textus Graecus cito lectus interpretationi textuum Aegyptiorum (in formis hieroglyphica et demotica expressorum) gradatim adiuvit. Denique textum plene interpretatus est Ioannes Franciscus Champollion. Ab opere eruditorum cumulativo coepit hodiernus scripturae hieroglyphicae linguaeque Aegyptiae a...
1
$begingroup$
This is what I mean as document text image: I want to label the texts in image as separate blocks and my model should detect these labels as classes. NOTE: This is how the end result should be like: The labels like Block 1, Block 2, Block 3,.. should be Logo, Title, Date,.. Others, etc. Work done: First approach : I tried to implement this method via Object Detection, it didn't work. It didn't even detect any text. Second approach : Then I tried it using PixelLink. As this model is build for scene text detection, it detected each and every text in the image. But this method can detect multiple lines of text if the threshold values are increased. But I have no idea how do I add labels to the text blocks. PIXEL_CLS_WEIGHT_all_ones = 'PIXEL_CLS_WEIGHT_all_ones' PIXEL_C...
1
$begingroup$
I have this LSTM model model = Sequential() model.add(Masking(mask_value=0, input_shape=(timesteps, features))) model.add(LSTM(100, dropout=0.2, recurrent_dropout=0.2, return_sequences=False)) model.add(Dense(features, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) and shapes X_train (21, 11, 5), y_train (21, 5) . Each timestep is represented by 5 features and return_sequences is set to False because I want to predict one 5D array (the next timestep) for each input sequence of 11 timesteps. I get the error ValueError: y_true and y_pred have different number of output (5!=1) If I reshape the data as X_train (21, 11, 5), y_train (21, 1, 5) instead I get the error ValueError: Inva...