Latitudo Oceani Pacifici ante rationes Véron fuit incerta.
Petrus Antonius Véron (1736–1770) fuit astronomus et mathematicus Francicus, discipulus Hieronymi Lalande astronomi et scriptoris[1] in Collegio Regali.[2] Véron celeberrime magnitudinem Oceani Pacifici computavit; qui et Philibertus Commerson erant inter principales scientiae peritos qui Ludovicum Antonium de Bougainville per eius navigationem explorationis comitati sunt.[3] Quodam morbo Timoriae anno 1770 mortem obiit.
Index
1Exploratio Oceani Pacifici
2Memoria
3Notae
4Nexus externi
Exploratio Oceani Pacifici |
Véron per circumnavigationem Praefecti Bougainville annis 1766–1769 erat astronomus, in navibus La Boudeuse et L'Étoile vehens, sed navigationes in aliis navibus iam fecerat. Defectio solis[4] et nova technologia eum sinit longitudinem veram prope Portum Praslin in australi Novae Hiberniae parte die 13 Iulii 1768 decernere.[5] Hoc fuit factum maximi momenti, quia, longitudine ad Fretum Magellanicum ante computata,[6] ei latitudinis Oceani Pacifici subtiliter probandi facultatem fecit.
Memoria |
Montes Verron in Papua Nova Guinea, una ex principalibus Novae Hiberniae proprietatibus montanis, ex eo appellatur.[7]
Notae |
↑Hieronymus Lalande, apud astro-history.hautefort.com.
↑Seymour Chapin, The Men from Across La Manche: French Voyages, 1660–1790.
↑"Louis-Antoine de Bougainville," apud www.nationalgeographic.de.
↑Thomas Suárez, Early mapping of the Pacific: The Epic Story of Seafarers, Adventurers and Cartographers Who Mapped the Earth's Greatest Ocean (Periplus Editions, 2004), ISBN 978-0-7946-0092-1.
↑Mémoires de l'Acadêmie des sciences de l'Institut de France (Lutetiae: Institut national des sciences et arts, 1789).
↑Olivier Chapuis, À la Mer comme au Ciel; Beautemps-Beaupré et la naissance de l'hydrographie moderne (1700–1850) (Lutetiae: Presses de l'Université de Paris-Sorbonne, 1999), ISBN 978-2-84050-157-2.
↑"History - NI mountains tell a tale," apud www.postcourier.com.
Nexus externi |
The charts produced during the Pacific voyages of Bougainville and Cook: a comparison
Tabula multilinguis Rosettana in Museo Britannico ostenditur. Tabula Rosettana, [1] etiam titulo OGIS 90 agnita, est stela decreto de rebus sacris in Aegypto anno 196 a.C.n. lato inscripta. Tabula iuxta Rosettam Aegypti, urbem in delta Nili et ad oram maris Mediterranei iacentem, anno 1799 a milite Francico reperta est. Inventio stelae, linguis duabus scripturisque tribus inscriptae, eruditis Instituti Aegypti statim nuntiata est; ibi enim iussu imperatoris Napoleonis eruditi omnium scientiarum (sub aegide Commissionis Scientiarum et Artium) properaverant cum expeditione Francica. Qua a Britannis mox debellata, tabula Rosettana Londinium missa hodie apud Museum Britannicum iacet. Textus Graecus cito lectus interpretationi textuum Aegyptiorum (in formis hieroglyphica et demotica expressorum) gradatim adiuvit. Denique textum plene interpretatus est Ioannes Franciscus Champollion. Ab opere eruditorum cumulativo coepit hodiernus scripturae hieroglyphicae linguaeque Aegyptiae a...
1
$begingroup$
This is what I mean as document text image: I want to label the texts in image as separate blocks and my model should detect these labels as classes. NOTE: This is how the end result should be like: The labels like Block 1, Block 2, Block 3,.. should be Logo, Title, Date,.. Others, etc. Work done: First approach : I tried to implement this method via Object Detection, it didn't work. It didn't even detect any text. Second approach : Then I tried it using PixelLink. As this model is build for scene text detection, it detected each and every text in the image. But this method can detect multiple lines of text if the threshold values are increased. But I have no idea how do I add labels to the text blocks. PIXEL_CLS_WEIGHT_all_ones = 'PIXEL_CLS_WEIGHT_all_ones' PIXEL_C...
1
$begingroup$
I have this LSTM model model = Sequential() model.add(Masking(mask_value=0, input_shape=(timesteps, features))) model.add(LSTM(100, dropout=0.2, recurrent_dropout=0.2, return_sequences=False)) model.add(Dense(features, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) and shapes X_train (21, 11, 5), y_train (21, 5) . Each timestep is represented by 5 features and return_sequences is set to False because I want to predict one 5D array (the next timestep) for each input sequence of 11 timesteps. I get the error ValueError: y_true and y_pred have different number of output (5!=1) If I reshape the data as X_train (21, 11, 5), y_train (21, 1, 5) instead I get the error ValueError: Inva...