The Chronicles of Narnia

Multi tool use
The Chronicles of Narnia ('Chronica Narniensia') est series septem librorum puerilium a C. S. Lewis auctore et professore Hibernico a 1949 usque ad 1954 liberis scriptorum, atque in prima editione a Paulina Baynes inlustrata, quae fabulae, de Narnia, terra phantastica magicaque ab auctore excogitata narrant, quae quidem terra ab animalibus quibus loquendi est facultas, plerumque ex mythologicisque antiquorum fabulis desumptis quique aeterno bello boni malique implicati sunt incolitur. Aslan, leo et genitor mundi Narniae, heroem cunctae fabulae esse constat, atque, ut ipse auctor declaravit, Iesu Christi quasi figura exstat; Petrus, Susanna, Lucia, et Edmundus, germani, ut primae personae qua pro licio coniungendo sunt. Nomen Narniae ex oppido Italico quod Lewis cognoscebat deducitur. Notabiles sunt notiones Christiana, Graeca, Romana, Anglica, Hibernica.
Nexus interni
- Aslan
- The Lion, the Witch and the Wardrobe
- The Voyage of the Dawn Treader
- The Magician's Nephew
- Prince Caspian
- The Silver Chair
LKkw,GS6d,eYB6WK,Tkl5mAAEYX2K7xF675Hm6yTakjXtY PKpMnb0wTa9WvVoXNnk6Jgiv8Q,Bz7i8bs s0,wq 66xdX8QkDQqFObtf,Sf
Popular posts from this blog
Tabula multilinguis Rosettana in Museo Britannico ostenditur. Tabula Rosettana, [1] etiam titulo OGIS 90 agnita, est stela decreto de rebus sacris in Aegypto anno 196 a.C.n. lato inscripta. Tabula iuxta Rosettam Aegypti, urbem in delta Nili et ad oram maris Mediterranei iacentem, anno 1799 a milite Francico reperta est. Inventio stelae, linguis duabus scripturisque tribus inscriptae, eruditis Instituti Aegypti statim nuntiata est; ibi enim iussu imperatoris Napoleonis eruditi omnium scientiarum (sub aegide Commissionis Scientiarum et Artium) properaverant cum expeditione Francica. Qua a Britannis mox debellata, tabula Rosettana Londinium missa hodie apud Museum Britannicum iacet. Textus Graecus cito lectus interpretationi textuum Aegyptiorum (in formis hieroglyphica et demotica expressorum) gradatim adiuvit. Denique textum plene interpretatus est Ioannes Franciscus Champollion. Ab opere eruditorum cumulativo coepit hodiernus scripturae hieroglyphicae linguaeque Aegyptiae a...
1
$begingroup$
This is what I mean as document text image: I want to label the texts in image as separate blocks and my model should detect these labels as classes. NOTE: This is how the end result should be like: The labels like Block 1, Block 2, Block 3,.. should be Logo, Title, Date,.. Others, etc. Work done: First approach : I tried to implement this method via Object Detection, it didn't work. It didn't even detect any text. Second approach : Then I tried it using PixelLink. As this model is build for scene text detection, it detected each and every text in the image. But this method can detect multiple lines of text if the threshold values are increased. But I have no idea how do I add labels to the text blocks. PIXEL_CLS_WEIGHT_all_ones = 'PIXEL_CLS_WEIGHT_all_ones' PIXEL_C...
1
$begingroup$
I have this LSTM model model = Sequential() model.add(Masking(mask_value=0, input_shape=(timesteps, features))) model.add(LSTM(100, dropout=0.2, recurrent_dropout=0.2, return_sequences=False)) model.add(Dense(features, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) and shapes X_train (21, 11, 5), y_train (21, 5) . Each timestep is represented by 5 features and return_sequences is set to False because I want to predict one 5D array (the next timestep) for each input sequence of 11 timesteps. I get the error ValueError: y_true and y_pred have different number of output (5!=1) If I reshape the data as X_train (21, 11, 5), y_train (21, 1, 5) instead I get the error ValueError: Inva...