Clive Staples Lewis

Multi tool use

Clive Staples Lewis
Res apud Vicidata repertae:
Nativitas:
29 Novembris 1898;
BelfastumObitus:
22 Novembris 1963;
OxoniaPatria:
Britanniarum RegnumNomen nativum:
Clive Staples Lewis
Officium
Munus: Scriptor, Poëta, professor, mythistoricus, philosophus, medievalist, Autobiographus, literary scholar, Theologus, essayist, scriptor scaenicus, literary critic, science fiction writer, children's writer, philologus
Patronus: Collegium Beatae Mariae Magdalenae
Consociatio
Religio: atheist, Catholicismus, Anglicanismus
Familia
Coniunx: Joy Davidman
Proles: Douglas Gresham
Memoria
Laurae: Carnegie Medal, honorary doctorate at the Laval University, Fellow of the British Academy
Sepultura: Oxoniensis comitatus

Statua Lewisiana in Belfast

Taverna 'Eagle and Child' ubi Lewis et J. R. R. Tolkien conveniebant operis suorum discutendum.
Clive Staples Lewis, breviter C. S. Lewis (natus Belfasti die 29 Novembris 1898, mortuus Oxoniae die 22 Novembris 1963) fuit scriptor et philologus Hibernicus cuius mythistoriae sunt inclutissimae, inter quas Chronica Narniensia (Anglice The Chronicles of Narnia), opus quod ab Italico oppido Narnia nomen trahit. Intimus amicus Ioannis Raginualdi Raguelis Tolkien erat.
Libri selecti a C. S. Lewis scripti |
The Chronicles of Narnia ("Chronica Narniensia"; series fabularum)
The Screwtape Letters ("Epistulae Screwtape")
Till We Have Faces ("Donec facies habebimus")
The Horse and His Boy ("Equus et puer suus")
- The Voyage of the Dawn Treader
Bibliographia |
- Walter Hooper, C. S. Lewis: a companion and guide. Londinii: Harper Collins, 1996. ISBN 0-00-627800-0.
.mw-parser-output .stipula{padding:3px;background:#F7F8FF;border:1px solid grey;margin:auto}.mw-parser-output .stipula td.cell1{background:transparent;color:white}

|
Haec stipula ad biographiam spectat. Amplifica, si potes!
|
HAWaDrhUVz B18bjqVL8xKjZj3AaZlBeFe1xI4tBQhRgr6FnE,g,CFKKEvjTRRDeSJ YZiMT uYXghC qd,WVf,Ad6a Nf F8km
Popular posts from this blog
Tabula multilinguis Rosettana in Museo Britannico ostenditur. Tabula Rosettana, [1] etiam titulo OGIS 90 agnita, est stela decreto de rebus sacris in Aegypto anno 196 a.C.n. lato inscripta. Tabula iuxta Rosettam Aegypti, urbem in delta Nili et ad oram maris Mediterranei iacentem, anno 1799 a milite Francico reperta est. Inventio stelae, linguis duabus scripturisque tribus inscriptae, eruditis Instituti Aegypti statim nuntiata est; ibi enim iussu imperatoris Napoleonis eruditi omnium scientiarum (sub aegide Commissionis Scientiarum et Artium) properaverant cum expeditione Francica. Qua a Britannis mox debellata, tabula Rosettana Londinium missa hodie apud Museum Britannicum iacet. Textus Graecus cito lectus interpretationi textuum Aegyptiorum (in formis hieroglyphica et demotica expressorum) gradatim adiuvit. Denique textum plene interpretatus est Ioannes Franciscus Champollion. Ab opere eruditorum cumulativo coepit hodiernus scripturae hieroglyphicae linguaeque Aegyptiae a...
1
$begingroup$
This is what I mean as document text image: I want to label the texts in image as separate blocks and my model should detect these labels as classes. NOTE: This is how the end result should be like: The labels like Block 1, Block 2, Block 3,.. should be Logo, Title, Date,.. Others, etc. Work done: First approach : I tried to implement this method via Object Detection, it didn't work. It didn't even detect any text. Second approach : Then I tried it using PixelLink. As this model is build for scene text detection, it detected each and every text in the image. But this method can detect multiple lines of text if the threshold values are increased. But I have no idea how do I add labels to the text blocks. PIXEL_CLS_WEIGHT_all_ones = 'PIXEL_CLS_WEIGHT_all_ones' PIXEL_C...
1
$begingroup$
I have this LSTM model model = Sequential() model.add(Masking(mask_value=0, input_shape=(timesteps, features))) model.add(LSTM(100, dropout=0.2, recurrent_dropout=0.2, return_sequences=False)) model.add(Dense(features, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) and shapes X_train (21, 11, 5), y_train (21, 5) . Each timestep is represented by 5 features and return_sequences is set to False because I want to predict one 5D array (the next timestep) for each input sequence of 11 timesteps. I get the error ValueError: y_true and y_pred have different number of output (5!=1) If I reshape the data as X_train (21, 11, 5), y_train (21, 1, 5) instead I get the error ValueError: Inva...