Regio Tomensis

Multi tool use

Regio Tomensis
Res apud Vicidata repertae:
regioCivitas:
RussiaLocus:
58°45′0″N 82°8′0″ESitus interretialis
Fines
Subdivisio superior: Russia, Russica Sovietica Foederativa Socialistica Res Publica
Territoria finitima: Regio Tumenensis, Iugra, Omsk Oblast, Regio Novosibirscensis, Regio Kemerovensis, Territorium Crasnoiarense
Forma
Area: 316.900 chiliometrum quadratum
Caput: Tomium
Gubernium
Praefectus: Sergey Žvačkin
Vita
Incolae: 1 078 280
Zona horaria: Krasnoyarsk Time, UTC+07:00
Sigla
Siglum autoraedarum: 70
Regio Tomensis[1] seu Tomiensis[2] vel Tomskensis[3] (Russice Томская область, tr. Tomskaja oblast' ), in Siberia occidentali sita, est subiectum Foederationis Russicae, anno 1944 creatum, et ab anno 2000 in eius districtum (circulum) foederalem Sibericum inclusum.
Regio Tomensis (Tomskensis), cum regionibus Omensi (Omskensi) et Tumenensi in occidente, districtu autonomo Chanty-Mansico – Iugra in occidente et septentrione, territorio Crasnoiarensi (Krasnoiarskensi) in oriente atque cum regionibus Kemerovensi et Novosibirscensi in meridie contermina, aream 314 391 km2 et circa 1 074 milia incolarum (anno 2015) habet. Metropolis regionis est Tomium (Tomsk).
Notae |
↑ "Tomensis": [1], [2], [3], [4]
↑ "Tomiensis": [5], [6]
↑ "Tomskensis": [7], [8]
Nexus externi |

|
Vicimedia Communia plura habent quae ad regionem Tomensem (Tomskensem) spectant.
|
- Situs officialis administrationis regionis Tomensis (Tomskensis)
lgmS14hw YtLKEHa6RNLvD,Fuu1 c O ai,qxg1,zguubkNZfeRni0L,X
Popular posts from this blog
Tabula multilinguis Rosettana in Museo Britannico ostenditur. Tabula Rosettana, [1] etiam titulo OGIS 90 agnita, est stela decreto de rebus sacris in Aegypto anno 196 a.C.n. lato inscripta. Tabula iuxta Rosettam Aegypti, urbem in delta Nili et ad oram maris Mediterranei iacentem, anno 1799 a milite Francico reperta est. Inventio stelae, linguis duabus scripturisque tribus inscriptae, eruditis Instituti Aegypti statim nuntiata est; ibi enim iussu imperatoris Napoleonis eruditi omnium scientiarum (sub aegide Commissionis Scientiarum et Artium) properaverant cum expeditione Francica. Qua a Britannis mox debellata, tabula Rosettana Londinium missa hodie apud Museum Britannicum iacet. Textus Graecus cito lectus interpretationi textuum Aegyptiorum (in formis hieroglyphica et demotica expressorum) gradatim adiuvit. Denique textum plene interpretatus est Ioannes Franciscus Champollion. Ab opere eruditorum cumulativo coepit hodiernus scripturae hieroglyphicae linguaeque Aegyptiae a...
1
$begingroup$
This is what I mean as document text image: I want to label the texts in image as separate blocks and my model should detect these labels as classes. NOTE: This is how the end result should be like: The labels like Block 1, Block 2, Block 3,.. should be Logo, Title, Date,.. Others, etc. Work done: First approach : I tried to implement this method via Object Detection, it didn't work. It didn't even detect any text. Second approach : Then I tried it using PixelLink. As this model is build for scene text detection, it detected each and every text in the image. But this method can detect multiple lines of text if the threshold values are increased. But I have no idea how do I add labels to the text blocks. PIXEL_CLS_WEIGHT_all_ones = 'PIXEL_CLS_WEIGHT_all_ones' PIXEL_C...
1
$begingroup$
I have this LSTM model model = Sequential() model.add(Masking(mask_value=0, input_shape=(timesteps, features))) model.add(LSTM(100, dropout=0.2, recurrent_dropout=0.2, return_sequences=False)) model.add(Dense(features, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) and shapes X_train (21, 11, 5), y_train (21, 5) . Each timestep is represented by 5 features and return_sequences is set to False because I want to predict one 5D array (the next timestep) for each input sequence of 11 timesteps. I get the error ValueError: y_true and y_pred have different number of output (5!=1) If I reshape the data as X_train (21, 11, 5), y_train (21, 1, 5) instead I get the error ValueError: Inva...